CDA(Certified Data Analyst)即“注册数据分析师”,是商业数据分析和大数据应用领域的专业技能认证,由全球CDA专业人士和会员机构共同发起,为各行业设立了CDA职业道德、行为准则、知识体系及人才考核标准。
新商业必备通行技能,人人皆需数据赋能!
近年来,以大数据为基础的各类科技应用成为市场热点,通过将大数据应用于产品营销、客户体验改进、风险控制等方面,取得了很好的效果。在各大领域,基于大数据挖掘和人工智能而产生的创新层出不穷,成为行业创造价值的力量源泉。
从产品经理到数据产品经理,从市场营销到数字化营销,从运营到增长黑客,从人工风控到数字化自动审批,大数据、数据分析、AI等技术已逐渐改变着企业的传统经营模式、运营模式和操作流程。企业在信息化、数字化、数智化演进的过程中将衍生出大量需要与数据打交道的新职业。
目前在中国大约有6亿人在用office,excel等工具,但大多为满足日常办公的需求,很少使用到工具的数据分析模块,未来随着零代码、低代码的不断普及,数据分析技术的门槛将大幅降低,新商业时代,数据思维、数字化基础能力已成为人人皆需的职场通行技能。
加速企业数字化转型,实现业务转型、创新、增长!
在“数字中国”战略的指导下,信息化基建的快速发展,让企业走向数字化转型的道路。数字化转型是建立在数字化转换、数字化升级基础上, 进一步触及公司核心业务,以新建一种商业模式为目标的高层次转型。
数字化转型不仅需要底层信息化基建的支撑,还需要培养相关人才实施应用,越来越多的企业加入到数字化转型的进程中,也激发了数据相关职位的市场需求。以知识型业务流程化、数据场景化、算法工具、决策智能化便于企业通过渐进式的方式积累数据资产、算法资产,最终打造成具有自成长能力的数据智能型企业。
就业市场的风口正指向科技型人才,数据岗位不再以单一的数据分析师岗位形式呈现。为适应就业市场需求,以数据分析为主要工作职能的岗位孵化出数据工程师、数据科学家和人工智能专家等。以数据为工作辅助的岗位已逐渐渗透到各行各业。
数字化落地模型与工作流程!
(1)EDIT数字化模型
EDIT数字化模型是企业在实现数字化转型、数字化工作的落地模板,包含四个部分,其中外环的EDI三个阶段由企业业务岗位的人员执行,中心T部分由技术部门人员提供数据支持(如下图):
该模型体现层次和纵深两个方面:1)层次方面,强调战略、管理、操作三个层级的业务部门人员均借助数据支持创造性的优化业务流程;2)纵深方面,以数据使用区分企业的前、中、后台,数据用户即业务人员,数据加工者即技术人员。
主要内容:
1、Exploration探索(是什么?)
指标体系——目标(O)、策略(S)、指标(M)、预报(趋势外推、预警)
2、Diagnosis诊断(为什么?)
性质分析法——内外部因素,是否可控
数量分析法——趋势维度、抽样调查、用户画像等
3、Instructiong指导(怎么办?)
知识库——产品知识库、客户标签库、场景标签库、渠道标签库
策略库——产品-客群匹配策略、客群-渠道匹配策略、客群-场景匹配策略
流程模板——执行体系、应用系统、数据系统
4、Tool工具(靠什么?)
数据模型——根据数据应用需求构建关系、维度、复杂网络等数据资产
算法模型——决策类、识别类、估计类的机器学习模型
优化模型——优化算法、流程挖掘
(2)数据科学层次和内容
数据分析在企业中分为宏观分析和微观分析两个层面。前者站在企业经营和运营的视角,为决策层和管理层提供数据支持;后者站在客户的视角,进行客户洞察,挖掘客户需求和匹配产品与服务,落地自动触发策略。
根据最佳实践,我们将数据科学在企业中的应用分为宏观分析、宏微观结合分析和微观分析三个层面:
1. 确定业务目标,能够根据问题业务指标提取数据库中相关数据,进行数据的探索、整理、清洗、处理、获取,统计制图,并通过相应数据分析方法和模型,结合相关软件完成数据的分析和报告,输出仪表盘,最后能够形成逻辑清晰的报告,传递分析结果,对实际业务提出建议和策略。
2. 针对不同分析主体,了解构建用户画像,根据宏微观根因分析,输出业务根因分析与策略优化报告,对行业进行评估,优化和决策。
能针对不同的业务提出算法模型及数据模型的解决思路,掌握算法模型基本大数据工具的使用,根据不同的数据业务需求选择合适的算法进行分析与处理,能够完整准确的输出数据分析报告,实现数据模型落地。
CDA认证考试体系即将全面升级!
基于以上市场需要与理论模型,CDA数据分析师认证考试体系在2020年进行着全面升级,构建新商业时代的通用数据语言,即CDA认证体系更加标准化、规范化、国际化,且考核内容更具有普适性、实用性,通过考核的人才更符合企业的需要。此外,CDA开放合作形式,与其他第三方机构和厂商合作,推出更多元化的产品。预告新版LEVEL I II III认证大纲将于2021年1月1日正式发布,考试模式会升级为LEVEL I II III逐级考试,即必须考过LEVEL I才能考LEVEL II,考过LEVEL II才能考LEVEL III。CDA新考试制度和考试内容于2021年1月1日起实施。
特别公告:目前报名CDA的考生可按照现有考试制度和大纲进行学习,于2021年1月1日之前参加考试,考试内容遵循现有CDA认证大纲,2021年1月1日起开始实施新版认证考试,考试内容遵循新版认证大纲。望各位考生悉知,合理安排考试及学习时间!
第14届CDA认证考试安排:
1、考试时间
LEVEL I +II:随报随考
LEVEL III:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。
2、考试地点
Level Ⅰ +II:中国区30+省市,70+城市,250+考场。考生可选择就近考场预约考试。
Level Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10