热线电话:13121318867

登录
首页大数据时代连载 | 业务数据分析方法之异常数据如何分析
连载 | 业务数据分析方法之异常数据如何分析
2020-11-19
收藏

要处理数据异常,我们要先知道什么是数据异常。首先要有数据,才能知道什么是“异常”,百度百科的解释是:指非正常的,不同于平常的。比方如突然的涨,突如其来的跌。

数据涨跌是我们在日常工作中,最容易被发现的现象,也是我们平时工作中要去分析的。也就是说,平时数据没有波动,也许我们不需要去分析,但是如果数据有涨或者跌我们都需要去查出原因的。

为什么涨和跌都要关注?

相信很多朋友跟我一样,起初接触到数据,我只关心跌,为什么昨天的数据跌了?并去分析其原因,也会关心涨,但并不关心为什么涨,就像买股票一样,跌了痛心疾首,并分析原因,涨了满心欢喜,后悔自己为什么不买入多一点儿。

在数据分析的过程中,我们不仅仅要关心跌,以便采取相应动作,减缓跌的趋势,也更要关心涨,弄清楚涨的原因,并放大它,或者说是复制它!

数据异动分析方法论

针对异常数据的处理,通常有五个步骤:

1.发现异常

就像你发现昨天数据跟往前不一样,猛涨了还是猛跌了,通过观测数据发现异常。

2.确定问题

发现异常之后,我们要确定这个异常是不是一个问题,有多严重,可以用对比分析法从时间维度上进行周同比、月同比或者是年同比。

3.确定原因

用多维度拆解法,对于这个异常的指标从不同的维度去拆解,找出原因。

4.针对性解决问题

找到原因之后,就是针对性的解决问题了,根据问题的原因,动用公司的相关资源,去解决这个问题。

5.执行

最后就是执行解决方案,把这个异常数据真正的从异常到执行,完成一个闭环。

案例解析

举个栗子:你现在是做社交APP产品的,在处理数据的过程中,发现某一天的数据异常,该如何分析?

发现问题:在对数据进行统计汇总时发现某一天的异常数据。

确定问题:数据跌了那么多,问题是不是很严重呢?往期有没有这么大的浮动?

由上图的周同比和月同比数据可以看出,往期是没有这个问题的,那说明这是一个严重的个例,表示这一天确实发生了什么事情,造成数据异常的情况。

确定原因:那是不是哪个省份出了问题呢?下面我们按省份进行查看,由下图可以看出,这次数据的猛跌是全国范围内的,基本上所有的省份都有下迭,这样就排除了某个区域下跌的原因。

那是不是设备出问题了呢?再来看不同操作系统的数据有什么不同,由下图可以看出安卓和iOS在这天都出现了下跌,所以排除了设备出问题的可能性。

那是不是服务挂了呢?按小时或者分钟来查看数据是不是符合平时流量规律?

通过上图可以看出,在这一天的0:01分,平台的数据为0,出现了断崖式下跌。而对于社交产品,以往这个时间用户活跃度是很高的,由此可以确定,这一天的数据异常确实是因为服务挂了。

针对性解决问题:联系相关负责人制定及时有效的解决方案。

执行:落实和监测解决方案的执行效果。

以上五个步骤看起来简单,但它是基于对业务洞察的基础之上的,需要根据以往的经验,才能做出这些判断 。如果对自己的业务不了解,再多的工具或是方法论,都是没有用的。所以,需要大家在工作中,不断的积累,不断的验证。

通过上面的案例解析,发现在确定问题时我们提了很多假设,其实数据只是验证假设的支撑工具。而这些假设是基于对业务有足够了解的基础之上的,在这个过程中,需要不断的去试错,不断的积累行业及业务的洞察,才能做出这些假设。

常见的假设

1.活动影响:查对应活动页面及对应动作的数据波动,关注活动是否有地域属性

通常市场或者运营会去做一些活动,所以如果数据出现问题,先看看PV、UV等数据,看是不是活动的影响。

2.版本发布:将版本号作为维度,区分查看

有时候数据出现异常也有可能是新版本的发布带来的波动,所以也可以把版本拎出来看,如果发布的是V1.5,我们可以对比着看看V1.3、V1.4这三个版本数据,看是否正常。

3.渠道投放:查看渠道来源变化

WEB端的渠道来源有很多很多,但是像APP就有点困难,这时可以看看新增的渠道来源,来看看变化影响。

4.策略调整:策略上线时间节点,区分前后关键指标波动

工作中我们会经常改变策略,比如说搜索策略,推荐策略等等,但是呢策略改变之后上线,它肯定有上线时间节点的,这时候可以把这个时间节点像刚才讲的案例那样,拆分成分钟来观察。

5.服务故障:明确故障时间,按时间维度进行小时或者分钟级别进行拆分

通过上面的案例可以看出,服务故障出问题是有一个明确时间的,按照上面案例讲的方法来观察,按分钟来查看,看有没有出现断崖式下跌,这个时候就可以明确是不是服务出现了故障。


——热门课程推荐:

想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;

想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;

想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;

想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;

想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;

想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情; 

想了解更多优质课程,请点击>>>

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询