作者: 俊欣
来源:关于数据分析与可视化
前不久,小编刷到这样一条短视频,“1.7亿的90后仅有约1000万对结婚,结婚率不到10%”,当然我们也无法查实当中数据的来源以及真实性,不过小编倒是总能听说身边的朋友在抱怨脱单难、找不到合适的对象。
今天小编通过Python写了一个简单的脚本在抓取公开的相亲文案,看看在相亲的都是些什么样的人?他们的择偶标准又是什么样子的?什么样子的人更加容易脱单?
我们引入需要用到的库,这里用到Python当中的requests库来发送和接受请求,通过正则表达式re这个库来解析数据
import requests
from tenacity import * import re import time
很多时候对遇到请求超时的情况,因此当出现一次错的时候,我们会多尝试几次,因此这里使用retry装饰器来多次尝试
@retry(stop=stop_after_attempt(5)) def do_requests(url):
response = requests.get(url, headers=headers, proxies=proxies, timeout=10) return response.text
我们抓取的数据包括出生年份、身高/体重、学历、收入、职业、自我介绍、择偶标准、车房情况等等,都是通过正则表达式re库来实现的,
date_of_birth = re.compile("<br/>①出生年月/星座(.*?)<br/>", re.M | re.S) sex = re.compile("<br/>【基本资料】(.*?)<br/>") height = re.compile("<br/>②身高/体重(.*?)<br/>") education = re.compile("<br/>⑤学历(.*?)<br/>") jobs_1 = re.compile("<br/>⑥职业(.*?)<br/>") income = re.compile("<br/>⑦月均收入(.*?)<br/>") married = re.compile("<br/>⑨有无婚史(.*?)<br/>") house_cars = re.compile("<br/>⑧车房情况(.*?)<br/>") self_intro = re.compile("<br/>⑪ 自我介绍(.*?)<br/>") requirements = re.compile("<br/>【择偶标准】<br/>(.*?)</a>") family_member = re.compile("<br/>⑩家庭成员(.*?)<br/>")
下面我们通过pyecharts库来绘制一下分析的结果,对了,要是读者朋友不知道怎么使用pyecharts这个库,可以阅读一下小编写的上几篇文章,都是非常干货的
我们先来看一下性别比例,从分布来看,女生前来相亲的比例更高,主要也是因为数据源是来自北京、上海、杭州等大城市的相亲介绍,大城市中似乎女生脱单更加困难一些,
我们再来看一下单身的女性的特征,首先她们的年龄主要集中在94、93以及95年左右,正好都是处在适婚的年龄
而她们的学历,本科占到了绝大多数,基本上都有本科的学历,而大专的占比排在第二,硕士和博士处于少数
另外小编也对单身女性的星座做了一个统计,发现处女座、天秤座以及射手座、白羊座的女性单身率略高一些
最后,我们来看一下她们的择偶标准吧,小编将她们的择偶标准单独提取出来,然后绘制成了词云图
review_list = []
reviews = get_cut_words("".join(df_girls["requirements"].astype(str).tolist()))
reviews_counter = Counter(reviews).most_common(200)
print(reviews_counter)
for review in reviews_counter:
review_list.append((" " + review[0] + " ") * review[1])
stylecloud.gen_stylecloud(text=" ".join(review_list), max_words=500, collocations=False,
font_path="KAITI.ttf", icon_name="fab fa-apple", size=653,
output_name="4.png")
最后呈现出来的样子如下图所示
可见相亲市场上的女生,她们首先是希望男方是要有房有车的,其次要是男方之前存在婚史,女生会比较介意,然后要是有稳定的工作、有能力有责任心,通常都会给女生留下比较好的印象,而至于外在条件上,大多数女生的回答则是身高在175-180左右,年龄在90-97年之间。
近年来,随着人们思想观念的改变,相亲也逐渐得到年轻人的接受与认可,特别是对于那些圈子比较窄,接触不到异性的人而言。小编希望每个人都能够在最后收获爱情,拥有美好的生活。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04