当你考虑你的第一份数据科学工作或你的下一个数据科学职位时,你会想问自己什么是重要的。对我来说,我在数据科学方面有过几个职位,这些是我认为在选择下一份工作时必须考虑的一些最关键的问题。
学习数据科学通常包括掌握机器学习算法,但有一个很大的部分在学术界经常被忽视,那就是这些算法的运算。原因可能是有许多不同的方法来部署您的模型,并且许多选项可能包括已经集成到您的业务中的昂贵的特定平台。由于这种可变性,学校或项目可能会选择不在教学大纲中包括操作,这是可以理解的。
话虽如此,您很可能想问这项工作是否是您作为数据科学家的责任,或者是否有一个专门的MLOps工程师(或机器学习工程师等)。当然,有些人可以做到这两个方面,并且更喜欢掌握创建和部署模型过程的两个部分,但是仅仅是专注于算法的数据科学家也是可以的。与你未来或现在的经理明确这个定义甚至更重要。
与上述考虑类似,您将想要询问您的团队中是否有SQL专家。一些数据科学职位几乎不需要SQL,而其他职位几乎每天都需要SQL。在您的面试中,您将希望缩小您可以期望执行的SQL的数量,以及您是否是唯一的SQL。
有时,还有其他人,如数据分析师、业务分析师或数据工程师,他们更像是一名专家,使用SQL。然而,在一些数据科学职位上,您将被要求在建模过程之前和之后查询您的数据。
在进入一个专业数据科学家角色之前,一次一个项目听起来似乎是一项简单的任务,但它可以很快变成一个全职项目。
对于任何一个特定项目,您都可以执行以下步骤:
数据科学的一些职位会有一个项目,只有一个人在上面工作,而在其他角色中,有几个人在同一个模型上工作。人们按照自己的节奏前进,与其他日子相比,有或多或少的效率,每天都可以享受或不享受与其他人在同一个项目上工作。
最终要由你来决定你喜欢什么,同样重要的是在进入一个角色之前知道你的期望是什么。
算法/模型创建的测试快得惊人。在开发一个模型并将其集成到您的业务中时,前后部分可能会占用大部分时间。
对于任何项目来说,时间线都可以波动,就像上面的其他考虑一样,它是关于期望的--需要多少工作才能获得有用的结果。
总的来说,重要的是要记住,当你接受数据科学角色(或任何角色)的面试时,你应该同样地面试他们,这些只是你可以问和提出的一些问题或考虑因素。此外,即使在当前的角色中,您仍然可以提出这些问题。
概括地说,在选择下一份数据科学工作之前,需要记住以下五点:
谢谢你的阅读。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20