许多“如何将科学数据化”的课程和文章,包括我自己的课程和文章,都倾向于强调统计学、数学和编程等基本技能。然而,最近,我通过自己的经历注意到,这些基本技能很难转化为实际技能,从而使你能够就业。
因此,我想创建一个唯一列表,其中包含实用技能,这些技能将使您具有工作能力。
我谈到的前四项技能对任何数据科学家来说都是绝对关键的,无论你是什么专业的。以下技能(5-11)都是重要的技能,但用法会因你的专业而异。
例如,如果你最有统计基础,你可能会花更多的时间在推断统计上。相反,如果你对文本分析更感兴趣,你可能会花更多的时间学习NLP,或者如果你对决策科学感兴趣,你可能会专注于解释性建模。你明白重点了。
说到这里,让我们深入研究一下我认为最实用的11项数据科学技能:
学习如何编写健壮的SQL查询,并在像Airflow这样的工作流管理平台上调度它们,将使您成为一名数据科学家,这是第1点的原因。
为什么?原因有很多:
因此,作为数据科学家,您必须是SQL方面的专家。没有例外。
资源
无论您是在构建模型、探索要构建的新特性,还是在进行深度挖掘,您都需要知道如何处理数据。
数据争论意味着将数据从一种格式转换为另一种格式。
特征工程是数据争论的一种形式,但具体指从原始数据中提取特征。
如何操作数据并不重要,不管是使用Python还是SQL,但您应该能够随心所欲地操作数据(当然,在可能的参数范围内)。
资源
当我说“版本控制”时,我特别指的是GitHub和Git。Git是世界上使用的主要版本控制系统,GitHub本质上是一个基于云的文件和文件夹存储库。
虽然Git不是一开始学习的最直观的技能,但对于几乎每一个与编码相关的角色来说,了解它是必不可少的。为什么?
花时间学习GIT。它会带你走很远的!
建造一个视觉上令人惊叹的仪表板或一个精确度超过95%的复杂模型是一回事。但是如果你不能把你的项目的价值传达给其他人,你就不会得到你应得的认可,最终,你的职业生涯就不会像你应该做的那样成功。
讲故事指的是你“如何”交流你的见解和模型。从概念上来说,如果你想一本图画书,洞察力/模型就是图画,而“讲故事”指的是连接所有图画的叙述。
在科技界,讲故事和交流是被严重低估的技能。从我职业生涯中所见,这种技能是大三学生与大四学生和经理人之间的区别。
构建回归和分类模型(即预测模型)并不是你总是要做的事情,但如果你是一名数据科学家,雇主会希望你知道这一点。
即使这不是你经常做的事情,也是你必须擅长的事情,因为你希望能够构建高性能的模型。在我的职业生涯中,到目前为止,我只生产了两个机器学习模型,但它们都是对业务产生重大影响的关键任务模型。
因此,您应该很好地理解数据准备技术、增强算法、超参数调优和模型评估度量。
资源
许多机器学习算法在很长一段时间内被认为是“黑箱”,因为不清楚这些模型是如何基于各自的输入得出预测的。这种情况现在正在改变,因为广泛采用了可解释的机器学习技术,如SHAP和Lime。
SHAP和LIME是两种技术,它们不仅告诉您每个特征的特征重要性,还告诉您对模型输出的影响,类似于线性回归方程中的系数。
使用SHAP和LIME,您可以创建解释性模型,也可以更好地交流预测模型背后的逻辑。
资源
a/B测试是一种实验形式,您可以比较两个不同的组,根据给定的指标,看看哪个组表现更好。
A/B测试可以说是企业界最实用、应用最广泛的统计概念。为什么?A/B测试允许您将100s或1000s的小改进组合在一起,从而随着时间的推移产生重大的变化和改进。
如果您对数据科学的统计方面感兴趣,A/B测试对于理解和学习是必不可少的。
资源
就我个人而言,我在职业生涯中没有使用过集群,但它是数据科学的核心领域,每个人至少都应该熟悉。
集群是有用的,原因有很多。您可以找到不同的客户细分,您可以使用聚类来标记未标记的数据,您甚至可以使用聚类来为模型找到截止点。
下面是一些参考资料,介绍了您应该了解的最重要的集群技术。
资源
虽然我一生中还没有构建过推荐系统,但它是数据科学中最实际的应用之一。推荐系统之所以如此强大,是因为它们有能力推动收入和利润。事实上,亚马逊声称在2019年,由于他们的推荐系统,他们的销售额提高了29%。
因此,如果您曾经在一家公司工作,其中的用户必须做出选择,并且有许多选项可供选择,推荐系统可能是一个有用的应用程序。
NLP,或自然语言处理,是人工智能的一个分支,专注于文本和语音。与机器学习不同,我认为NLP还远未成熟,这正是它如此有趣的原因。
NLP有很多用例…
总的来说,NLP是数据科学世界中一个非常有趣和有用的利基领域。
资源
最近,数据科学家采用了度量开发的职责,因为表面度量依赖于1)数据来计算度量和2)代码来计算和输出度量。
度量开发涉及几个方面:
我希望这有助于指导你的学习,并给你一些未来一年的方向。有很多东西要学,所以我肯定会选择几个听起来对你来说最有趣的技能,然后从那里开始。
请记住,这更多的是一篇由轶事经验支持的固执己见的文章,所以从这篇文章中获取你想要的东西。但我一如既往地祝你在学习上取得最好的成绩!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31