许多“如何将科学数据化”的课程和文章,包括我自己的课程和文章,都倾向于强调统计学、数学和编程等基本技能。然而,最近,我通过自己的经历注意到,这些基本技能很难转化为实际技能,从而使你能够就业。
因此,我想创建一个唯一列表,其中包含实用技能,这些技能将使您具有工作能力。
我谈到的前四项技能对任何数据科学家来说都是绝对关键的,无论你是什么专业的。以下技能(5-11)都是重要的技能,但用法会因你的专业而异。
例如,如果你最有统计基础,你可能会花更多的时间在推断统计上。相反,如果你对文本分析更感兴趣,你可能会花更多的时间学习NLP,或者如果你对决策科学感兴趣,你可能会专注于解释性建模。你明白重点了。
说到这里,让我们深入研究一下我认为最实用的11项数据科学技能:
学习如何编写健壮的SQL查询,并在像Airflow这样的工作流管理平台上调度它们,将使您成为一名数据科学家,这是第1点的原因。
为什么?原因有很多:
因此,作为数据科学家,您必须是SQL方面的专家。没有例外。
资源
无论您是在构建模型、探索要构建的新特性,还是在进行深度挖掘,您都需要知道如何处理数据。
数据争论意味着将数据从一种格式转换为另一种格式。
特征工程是数据争论的一种形式,但具体指从原始数据中提取特征。
如何操作数据并不重要,不管是使用Python还是SQL,但您应该能够随心所欲地操作数据(当然,在可能的参数范围内)。
资源
当我说“版本控制”时,我特别指的是GitHub和Git。Git是世界上使用的主要版本控制系统,GitHub本质上是一个基于云的文件和文件夹存储库。
虽然Git不是一开始学习的最直观的技能,但对于几乎每一个与编码相关的角色来说,了解它是必不可少的。为什么?
花时间学习GIT。它会带你走很远的!
建造一个视觉上令人惊叹的仪表板或一个精确度超过95%的复杂模型是一回事。但是如果你不能把你的项目的价值传达给其他人,你就不会得到你应得的认可,最终,你的职业生涯就不会像你应该做的那样成功。
讲故事指的是你“如何”交流你的见解和模型。从概念上来说,如果你想一本图画书,洞察力/模型就是图画,而“讲故事”指的是连接所有图画的叙述。
在科技界,讲故事和交流是被严重低估的技能。从我职业生涯中所见,这种技能是大三学生与大四学生和经理人之间的区别。
构建回归和分类模型(即预测模型)并不是你总是要做的事情,但如果你是一名数据科学家,雇主会希望你知道这一点。
即使这不是你经常做的事情,也是你必须擅长的事情,因为你希望能够构建高性能的模型。在我的职业生涯中,到目前为止,我只生产了两个机器学习模型,但它们都是对业务产生重大影响的关键任务模型。
因此,您应该很好地理解数据准备技术、增强算法、超参数调优和模型评估度量。
资源
许多机器学习算法在很长一段时间内被认为是“黑箱”,因为不清楚这些模型是如何基于各自的输入得出预测的。这种情况现在正在改变,因为广泛采用了可解释的机器学习技术,如SHAP和Lime。
SHAP和LIME是两种技术,它们不仅告诉您每个特征的特征重要性,还告诉您对模型输出的影响,类似于线性回归方程中的系数。
使用SHAP和LIME,您可以创建解释性模型,也可以更好地交流预测模型背后的逻辑。
资源
a/B测试是一种实验形式,您可以比较两个不同的组,根据给定的指标,看看哪个组表现更好。
A/B测试可以说是企业界最实用、应用最广泛的统计概念。为什么?A/B测试允许您将100s或1000s的小改进组合在一起,从而随着时间的推移产生重大的变化和改进。
如果您对数据科学的统计方面感兴趣,A/B测试对于理解和学习是必不可少的。
资源
就我个人而言,我在职业生涯中没有使用过集群,但它是数据科学的核心领域,每个人至少都应该熟悉。
集群是有用的,原因有很多。您可以找到不同的客户细分,您可以使用聚类来标记未标记的数据,您甚至可以使用聚类来为模型找到截止点。
下面是一些参考资料,介绍了您应该了解的最重要的集群技术。
资源
虽然我一生中还没有构建过推荐系统,但它是数据科学中最实际的应用之一。推荐系统之所以如此强大,是因为它们有能力推动收入和利润。事实上,亚马逊声称在2019年,由于他们的推荐系统,他们的销售额提高了29%。
因此,如果您曾经在一家公司工作,其中的用户必须做出选择,并且有许多选项可供选择,推荐系统可能是一个有用的应用程序。
NLP,或自然语言处理,是人工智能的一个分支,专注于文本和语音。与机器学习不同,我认为NLP还远未成熟,这正是它如此有趣的原因。
NLP有很多用例…
总的来说,NLP是数据科学世界中一个非常有趣和有用的利基领域。
资源
最近,数据科学家采用了度量开发的职责,因为表面度量依赖于1)数据来计算度量和2)代码来计算和输出度量。
度量开发涉及几个方面:
我希望这有助于指导你的学习,并给你一些未来一年的方向。有很多东西要学,所以我肯定会选择几个听起来对你来说最有趣的技能,然后从那里开始。
请记住,这更多的是一篇由轶事经验支持的固执己见的文章,所以从这篇文章中获取你想要的东西。但我一如既往地祝你在学习上取得最好的成绩!
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16