许多“如何将科学数据化”的课程和文章,包括我自己的课程和文章,都倾向于强调统计学、数学和编程等基本技能。然而,最近,我通过自己的经历注意到,这些基本技能很难转化为实际技能,从而使你能够就业。
因此,我想创建一个唯一列表,其中包含实用技能,这些技能将使您具有工作能力。
我谈到的前四项技能对任何数据科学家来说都是绝对关键的,无论你是什么专业的。以下技能(5-11)都是重要的技能,但用法会因你的专业而异。
例如,如果你最有统计基础,你可能会花更多的时间在推断统计上。相反,如果你对文本分析更感兴趣,你可能会花更多的时间学习NLP,或者如果你对决策科学感兴趣,你可能会专注于解释性建模。你明白重点了。
说到这里,让我们深入研究一下我认为最实用的11项数据科学技能:
学习如何编写健壮的SQL查询,并在像Airflow这样的工作流管理平台上调度它们,将使您成为一名数据科学家,这是第1点的原因。
为什么?原因有很多:
因此,作为数据科学家,您必须是SQL方面的专家。没有例外。
资源
无论您是在构建模型、探索要构建的新特性,还是在进行深度挖掘,您都需要知道如何处理数据。
数据争论意味着将数据从一种格式转换为另一种格式。
特征工程是数据争论的一种形式,但具体指从原始数据中提取特征。
如何操作数据并不重要,不管是使用Python还是SQL,但您应该能够随心所欲地操作数据(当然,在可能的参数范围内)。
资源
当我说“版本控制”时,我特别指的是GitHub和Git。Git是世界上使用的主要版本控制系统,GitHub本质上是一个基于云的文件和文件夹存储库。
虽然Git不是一开始学习的最直观的技能,但对于几乎每一个与编码相关的角色来说,了解它是必不可少的。为什么?
花时间学习GIT。它会带你走很远的!
建造一个视觉上令人惊叹的仪表板或一个精确度超过95%的复杂模型是一回事。但是如果你不能把你的项目的价值传达给其他人,你就不会得到你应得的认可,最终,你的职业生涯就不会像你应该做的那样成功。
讲故事指的是你“如何”交流你的见解和模型。从概念上来说,如果你想一本图画书,洞察力/模型就是图画,而“讲故事”指的是连接所有图画的叙述。
在科技界,讲故事和交流是被严重低估的技能。从我职业生涯中所见,这种技能是大三学生与大四学生和经理人之间的区别。
构建回归和分类模型(即预测模型)并不是你总是要做的事情,但如果你是一名数据科学家,雇主会希望你知道这一点。
即使这不是你经常做的事情,也是你必须擅长的事情,因为你希望能够构建高性能的模型。在我的职业生涯中,到目前为止,我只生产了两个机器学习模型,但它们都是对业务产生重大影响的关键任务模型。
因此,您应该很好地理解数据准备技术、增强算法、超参数调优和模型评估度量。
资源
许多机器学习算法在很长一段时间内被认为是“黑箱”,因为不清楚这些模型是如何基于各自的输入得出预测的。这种情况现在正在改变,因为广泛采用了可解释的机器学习技术,如SHAP和Lime。
SHAP和LIME是两种技术,它们不仅告诉您每个特征的特征重要性,还告诉您对模型输出的影响,类似于线性回归方程中的系数。
使用SHAP和LIME,您可以创建解释性模型,也可以更好地交流预测模型背后的逻辑。
资源
a/B测试是一种实验形式,您可以比较两个不同的组,根据给定的指标,看看哪个组表现更好。
A/B测试可以说是企业界最实用、应用最广泛的统计概念。为什么?A/B测试允许您将100s或1000s的小改进组合在一起,从而随着时间的推移产生重大的变化和改进。
如果您对数据科学的统计方面感兴趣,A/B测试对于理解和学习是必不可少的。
资源
就我个人而言,我在职业生涯中没有使用过集群,但它是数据科学的核心领域,每个人至少都应该熟悉。
集群是有用的,原因有很多。您可以找到不同的客户细分,您可以使用聚类来标记未标记的数据,您甚至可以使用聚类来为模型找到截止点。
下面是一些参考资料,介绍了您应该了解的最重要的集群技术。
资源
虽然我一生中还没有构建过推荐系统,但它是数据科学中最实际的应用之一。推荐系统之所以如此强大,是因为它们有能力推动收入和利润。事实上,亚马逊声称在2019年,由于他们的推荐系统,他们的销售额提高了29%。
因此,如果您曾经在一家公司工作,其中的用户必须做出选择,并且有许多选项可供选择,推荐系统可能是一个有用的应用程序。
NLP,或自然语言处理,是人工智能的一个分支,专注于文本和语音。与机器学习不同,我认为NLP还远未成熟,这正是它如此有趣的原因。
NLP有很多用例…
总的来说,NLP是数据科学世界中一个非常有趣和有用的利基领域。
资源
最近,数据科学家采用了度量开发的职责,因为表面度量依赖于1)数据来计算度量和2)代码来计算和输出度量。
度量开发涉及几个方面:
我希望这有助于指导你的学习,并给你一些未来一年的方向。有很多东西要学,所以我肯定会选择几个听起来对你来说最有趣的技能,然后从那里开始。
请记住,这更多的是一篇由轶事经验支持的固执己见的文章,所以从这篇文章中获取你想要的东西。但我一如既往地祝你在学习上取得最好的成绩!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04