我们每个人都需要一份简历来展示我们的技能和经验,但我们要付出多少努力才能让它产生影响力。不可否认,简历在我们的求职过程中起着关键作用。本文将探讨一些简单的策略来显著改善数据科学简历的呈现方式和内容。
获得一份数据科学工作变得非常竞争,尽管机会的数量是历史上最高的,但申请这些工作的人数也非常高。
例如,下面是LinkedIn上一个职位公告的截图,这个职位公告总共有1200+个视图,如果我们考虑大约十分之一的人申请这个职位,那么总共有120+个申请,这只是申请职位的一种方式,会有人从其他来源申请这个职位,通过引用和直接申请,因此申请的总数大约是200+个。同样的逻辑适用于任何数据科学工作职位,因此简历在入围中发挥着至关重要的作用。
在这篇文章中,我将指导你如何建立一份高影响力的简历,帮助你获得工作申请的入围名单。本文涉及的主题包括,
如果您对视频格式有偏好,请查看此处。
大多数求职申请都接受pdf和word格式的简历。但我建议你坚持使用pdf格式,因为这样可以保证格式的保留,也就是说,招聘人员看简历的方式与你看简历的方式相同。
个人简介是简历的关键,把它看成是一个电梯式的推销。它应该是有说服力的,应该包括你是谁,你的技能和长处是什么等信息。简历的这一部分将是第一印象的主要驱动力,也会影响招聘人员的决定,因此要花足够的时间确保它包括关于你的关键细节。
我的人在简历的开头包括职业目标。我个人主张把职业目标从简历中删除,而是用这个空间来做一个更好的个人简介。因为大多数招聘都是基于你的成就、优势和技能,而不是基于你的抱负。所以,做一个明智的决定,有效地利用你简历中的内容,尤其是开头。
确保你在简历中包括的细节都是要点,无论是个人简介还是专业/项目经验。很难把注意力集中在一个长段落上,因此保持它的简单和要点可以确保更好的可读性,如下图所示。
尽量将每个项目符号限制在2-3行,并将关键短语加粗,因为这有助于快速扫描。
简历的内容应该是一致的格式,标题,副标题,要点,以及简历中的其他文字都应该是一致的格式。下面是一些可以确保一致性的东西,
经常检查排版和语法错误,因为它们可能会让招聘人员望而却步。虽然排版和语法错误很有可能被忽视,但当被发现时,它们会发出错误的信号,
你的联系方式对招聘人员联系你很重要,因此要确保仔细检查你的详细信息。许多人开始根据同事或朋友的简历编辑简历,在这种情况下,确保在编辑文本时也编辑了超链接。就像在编辑电子邮件id时一样,确保超链接中的电子邮件也被编辑过。
确保你的简历有链接到你的LinkedIn个人资料、git存储库以及其他网站或像Kaggle这样的你想要向招聘人员突出的个人资料
当你在一份工作申请中与很多人竞争时,像定制这样的简单事情可以成为一个与众不同的因素,可以帮助你获得招聘人员的立即关注。当我说根据职位发布定制你的简历时,并不意味着对你申请的每一份工作都完全重写你的简历,而只是做一些小的调整,以确保你的简历突出工作的要求和期望。
自定义简历有助于
简历中可以自定义的组件很少,它们是
这是一个神奇的公式,有助于将你的成就转化为一个高影响力的声明。它最早是由拉兹洛·博克在他的艺术作品中介绍的。这是一个非常有效的技巧,可以用来写一份有影响力的简历。这个公式意味着,
通过执行“z”完成了用“y”衡量的“x”
我将用一些简单的例子来准确地解释这个公式如何应用在你的数据科学简历中。
示例1:
“构建推荐系统”
这是一个简单的声明,一点也不吸引人,因为它没有确切地提到用例的影响。我们可以通过以下语句包含其影响的详细信息来改进它,
“构建了一个提升收入10%的推荐系统”
现在,这比前面的声明要好得多,但是可以通过使用下面的Google X-Y-Z公式来进一步改进(公式的X、Y和Z在下面突出显示)
“构建了推荐系统(X),通过使用协同过滤算法(Z)帮助将提高了平台上的客户参与度(Y)”
示例2:
“参加了卡格尔比赛”
这又是一个简单的陈述,只是说你参加了kaggle比赛,但没有谈论你的表现,因此可以通过包括以下一些细节来改进,
“在卡格尔比赛中获得第20名”
这现在更好了,但我们可以通过使用谷歌的X-Y-Z公式使其更具影响力,
“参加了的Kaggle竞赛(X),并在1250个团队(Y)中以第20名
现在,用这个公式将你的成就转化为更有力的陈述。
有很多很棒的工具可以帮助你建立一份令人惊叹的简历。下面是我最喜欢的两个,
这些工具对创建令人惊叹的简历非常有帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31