数据科学家和机器学习工程师的角色之间经常存在混淆。尽管他们确实友好地合作,在专门知识和经验方面有一些重叠,但这两种作用的目的完全不同。
从本质上说,我们是在区分科学家和工程师,前者寻求理解他们工作背后的科学知识,后者寻求构建他人可以访问的东西。这两种角色都非常重要,而且在一些公司可以互换--例如,某些组织中的数据科学家可以执行机器学习工程师的工作,反之亦然。
为了使区别变得清晰,我将把区别分为3类;1)职责2)专长3)工资期望。
数据科学家遵循数据科学过程,这也可以称为Blitzstein&Pfister工作流。Blitzstein和Pfister最初创建了这个框架来教哈佛CS109课程的学生如何处理数据科学问题。
数据科学过程包括5个关键阶段
数据科学家完成的大部分工作都是在研究环境中进行的。在这种环境中,数据科学家执行任务来更好地理解数据,以便他们能够构建能够最好地捕捉数据固有模式的模型。一旦他们建立了一个模型,下一步是评估它是否符合项目的预期结果。如果没有,他们将迭代地重复这个过程,直到模型满足期望的结果,然后将其交给机器学习工程师。
机器学习工程师负责创建和维护机器学习基础设施,允许他们将数据科学家构建的模型部署到生产环境中。因此,机器学习工程师通常在开发环境中工作,在开发环境中,他们关心的是复制由数据科学家在研究环境中构建的机器学习管道。并且,它们在生产环境中工作,在生产环境中,模型可以被其他软件系统和/或客户机访问。
本质上,机器学习工程师负责维护ML基础设施,允许他们部署和扩展数据科学家建立的模型。而且,数据科学家是机器学习工程师构建的机器学习基础设施的用户。
人们对这两个角色之间的差异感到困惑的原因是,他们的技能有许多重叠的地方。例如,数据科学家和机器学习工程师都应该具备以下知识;
这些角色之间的主要重叠导致一些组织,特别是较小的组织和初创企业,将这些角色合并为一个角色。因此,有些组织让数据科学家做机器学习工程师的工作,有些组织让机器学习工程师做数据科学家的工作。只会导致更多从业者的困惑。
然而,每个角色所需的专门知识之间存在一些关键差异。
数据科学家通常是非常好的数据故事讲述者。有些人会争辩说,这种特质使他们比机器学习工程师更有创造力。另一个区别是,数据科学家可能会使用PowerBI和Tableau等工具来分享对业务的洞察力,他们不一定需要使用机器学习。
弥补伴侣不足的夫妇通常更强大。当你这样想的时候,前面提到的专业知识可能是机器学习工程师的弱点,他被期望在计算机科学和软件工程方面有很强的基础。机器学习工程师应该了解数据结构和算法,并理解创建可交付软件的基本组件。
话虽如此,对于机器学习工程师来说,很好地掌握另一种编程语言如Java、C++或Julia并不罕见。
确定确切的工资期望是困难的。这两个职位的薪水会因各种因素而异,比如你的经验、你所拥有的资格、你所在的地方和你工作的部门。
各组织也有望提供不同的福利。无论什么角色,你都可以收到加入公司养老金计划、灵活或远程工作、绩效奖金和私人医疗保险的邀请。
联合王国(英国)
美利坚合众国(USA)
总的来说,公平地说,机器学习工程师的平均工资通常高于数据科学家。
尽管数据科学家和机器学习工程师的角色有相似之处,但他们在职责、专业知识和收入方面有很大不同。从我听过的大多数关于这个话题的采访中,许多人说从数据科学家到机器学习工程师的转变比从机器学习工程师到数据科学家的转变要困难得多。这是因为数据科学家通常不精通软件工程和计算机科学基础,这是一个很大的学习曲线。
感谢阅读!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30