我对数据科学的热情始于大约两年半前。我在做一份与数据科学无关的工作。对我来说,转行是一个很大的挑战,因为我有很多东西要学。
经过两年的学习和奉献,我终于找到了第一份数据科学家的工作。当然,我的学习之旅并没有停止。当我做数据科学家的时候,我学到了很多新东西。
学习部分不会改变。然而,我学什么和怎么学发生了巨大的变化。在本文中,我想详细说明这些变化。如果你正在努力成为一名数据科学家,你可能会经历同样的事情。
重要的是要强调,作为一名数据科学家需要不断学习。数据科学仍在发展,你需要时刻保持新鲜。我认为数据科学还不是一个成熟的领域,所以新的技术和概念经常被引入。
对于一个现实生活中的问题来说,1000万行并不多。
对我来说,最明显的变化是数据的大小。当我自己学习的时候,我正在练习最多有10万行的数据集。我现在认为它是一个小数据集。数据的大小取决于您正在处理的字段和问题。一般来说,1000万行对于一个实际的问题来说并不多。
使用大型数据集有其自身的挑战。首先,我需要学习能够处理此类数据集的新工具。在我开始做数据科学家之前,熊猫对我来说绰绰有余。然而,它并不是一个拥有大规模数据的高效工具。
允许分布式计算的工具更受青睐。Spark是其中最受欢迎的一个。它是一个用于大规模数据处理的分析引擎。Spark允许您将数据和计算分散到集群中,以实现性能的大幅提升。
幸运的是,可以将Spark与Python代码一起使用。PySpark是一个用于Spark的Python API,它结合了Python的简单性和Spark的高效性。
另一个大的变化是从本地环境到云环境。当我学习的时候,我在电脑里做所有的事情(即本地工作)。这对练习和学习来说已经足够了。
然而,一家公司在当地经营的可能性极小。大多数公司都在云中工作。数据存储在云中,计算在云中完成,等等。
为了高效地完成工作,获得对云工具和服务的全面理解是非常重要的。云提供商多种多样,但主要参与者是AWS、Azure、Google云平台。我必须学习如何使用他们的服务和管理存储在云中的数据。
作为一名数据科学家,我经常使用的另一个工具是ISGit。我在学习的时候学会了基本的git命令。但是,在生产环境中工作时就不同了。Git是一个版本控制系统。它维护对代码所做的所有更改的历史记录。
Git允许协作工作。你可能会作为一个团队在项目上工作。因此,即使你在一家小型初创企业工作,git也是一项必备技能。项目是用Git开发和维护的。
Git比它从外部看起来要复杂一点。然而,你在做了几个项目后就习惯了。
工具并不是我学习过程中唯一改变的东西。我处理数据的方式也发生了变化。当您处理一个可随时使用的数据集时,在清理和处理数据方面,您无能为力。例如,在机器学习任务的情况下,您可以在几个简单的步骤后应用模型。
在你的工作中情况会不同。一个项目的很大一部分花费在准备数据上。我不是说只是清理原始数据。这也是重要的一步。然而,探索数据中的底层结构和理解特征之间的关系是至关重要的。
如果您正在处理一个新问题,定义数据需求也将是您的工作。这是另一个需要一套特殊技能的挑战。领域知识是其中必不可少的一部分。
特征工程比机器学习模型的超参数调整重要得多。通过超参数调优可以实现的功能是有限的,因此可以在一定程度上提高性能。另一方面,一个信息特性有可能大大改善一个模型。
在我作为一名数据科学家开始工作之前,我专注于理解机器学习算法和如何调整模型。我现在把大部分时间都花在准备数据上。
我所说的就绪包括许多步骤,例如
统计知识对这些步骤非常重要。因此,我强烈建议提高你在这方面的知识。它会在你的数据科学生涯中帮助你很多。
有大量的资源来学习数据科学。您可以使用它们来提高您在数据科学的任何构建块中的技能。然而,这些资源并不能提供真正的工作经验。没有错。当你找到第一份工作时,让自己准备好学习一套不同的材料。
谢谢你的阅读。如果你有任何反馈请让我知道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06