我相信这些课程是如此重要,因为它们有助于拥有一个成功的数据科学职业生涯。读完这篇文章后,您会意识到,要成为一名优秀的数据科学家,不仅仅是构建复杂的模型。
话虽如此,以下是我在数据科学生涯中学到的3个最重要的教训!
其中一件事是,几乎所有的数据科学课程和训练营都强调并详细阐述了项目生命周期中的建模阶段,而实际上,这只是整个过程的一个很小的组成部分。
如果在工作中构建一个初步的机器学习模型需要一个月的时间,那么您可能需要花一个月的时间来事先理解业务问题,然后记录和社交项目。
不仅建议您在构建模型之前和之后完成这些步骤,而且这对项目的成功至关重要。
让我们深入探讨每一个问题的重要性:
这三个步骤有什么共同点?它们都是交流的一种形式。事实上,我认为良好的交流是数据科学家和高级数据科学家之间的区别。
当我开始学习数据科学时,我试图学习最复杂的概念,而不学习基础知识。
经过多年的经验,我已经意识到,基础知识足以让你在职业生涯中取得80%以上的成功。为什么?简单的解决方案总是会赢。它们更容易理解,更容易实现,也更容易维护。一旦一个简单的解决方案证明了它对公司的价值,只有这样,您才能研究更复杂的解决方案。
那么基本面到底是什么呢?
经过3年的工作,我确信掌握SQL是成功职业生涯的关键。SQL并不是一项难以学习的技能(例如,从哪里选择),但它肯定是一项难以完善的技能。SQL对于数据争论、数据探索、数据可视化(构建仪表板)、构建报表和构建数据管道至关重要。
如果你想掌握SQL,请看下面我的指南:一个完整的15周的课程来掌握数据科学的SQL
对基本的描述性和推论性统计有一个很好的理解也是非常重要的。
描述性统计信息允许您以简单的方式总结和理解数据。
推理统计允许您根据有限数量的数据(样本)做出结论。这对于建立解释模型和A/B测试是必不可少的。
Python主要用于执行EDA和特性工程。也就是说,这两个步骤也可以使用SQL来完成,所以要记住这一点。我个人喜欢在我的技术栈中使用Python,因为我发现在Jupyter笔记本中执行EDA比在SQL控制台或仪表板中执行EDA更容易。查看:探索性数据分析的一个详细的一步一步指南
构建、测试、迭代、重复。
通常,在一个模型上花费更少的时间来将初始版本投入生产并从那里进行迭代总是更好的。为什么?
我想说明的一点是不是催促您的项目,而是快速部署它们,以便您可以接收反馈、迭代和改进您的项目。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20