公司正在向市场研究和商业分析投入大量资金,为长期数据科学家和该领域的新手创造新的机会。与此同时,就业市场也变得更加竞争激烈。数据科学职位的平均薪酬正在上升,因为这些工作对企业来说变得更加重要,这鼓励招聘经理更仔细地审查新员工。
数据科学家想要保持竞争力或进入该领域,就需要正确的方法。这些技巧将帮助他们寻找和确保一个新的职位。
人们产生的信息比以往任何时候都多--专家认为,到2025年,全球数据有望超过175个字节。与此同时,AI和大数据分析的创新使大型数据集对企业来说比以往任何时候都更有价值--但前提是它们必须与训练有素的科学家合作,这些科学家可以揭示必要的洞察力。
在所有接受调查的企业中,有一半的企业以这样或那样的方式使用了人工智能,更多的企业表示,他们计划在不久的将来进一步投资于数据驱动的解决方案。
现在,一个数据科学职位招聘收到数百份申请并不罕见。更高的需求也意味着薪酬的上升,企业在雇佣这些职位的人时更加谨慎。
作为回应,许多招聘经理夸大了数据科学新职位的工作要求--要求更高的资历、更多的经验和更多的关键字。即使是资历良好或学术记录良好的数据科学家,现在也不能保证得到一个职位。
想要进入这个领域或获得一个新职位的数据科学家需要正确的策略才能成功。这六个小贴士将帮助成熟的专业人士和那些新进入该行业的人安全工作。
熟悉流行的行业关键词--如Python、SQL、AI和数据分析--可以帮助你写一份简历和简历,更有效地传达你的技能,并通过招聘经理经常使用的简历筛选器。
跟上不断变化的行业需求也能帮助你保持竞争力。虽然Python仍然是一项基本技能,但更多的企业希望熟悉深度学习、梯度提升机器和大数据分析。许多公司还希望申请者在过去使用过各种各样的数据挖掘和分析方法。
在申请人工智能知识的职位时,强调数据科学和机器学习方面的知识可能会帮助你获得面试机会。
同时,关键字填充,即在简历中不自然地填入关键字以击败简历扫描仪或吸引招聘经理的注意的行为,应该避免。试着只在简历或简历中使用它们,当它们相关时,帮助你解释你独特的背景和数据科学技能集。
研究一下大公司是如何雇佣数据科学家的,也可以帮助你改进简历和简历。人工智能和ML公司Daitaku最近在一个关于它如何在国际上找到数据科学家的案例研究中受到了关注。该报告强调了技能设置比地理位置更重要。
求职最佳实践通常也有助于数据科学家寻找新的职位。为你申请的每一份工作量身定制你的简历和求职信将需要一些额外的努力。尽管如此,它可以帮助你在面试前交流你的特定技能,并说明你是如何适合某个职位的。
积极与其他数据科学家和招聘人员建立联系,寻找专业人士,可以帮助你扩大关系网,更容易找到与你的技能和经验水平相匹配的职位。
在等待招聘经理回复的同时,你也可以寻找短期工作,这可以帮助你进一步发展技能,并在简历中添加一两个要点。
需要数据科学家但难以填补新职位的企业可能会向合格的申请人提供临时和自由职业工作。像UpWork和自由职业者求职板这样的平台可以为你提供这些职位的线索。
数据科学家的职位比以往任何时候都多,但这并不意味着市场竞争减弱。数据科学日益增长的价值和熟练应聘者的缺乏使得公司非常谨慎地招聘。
数据科学家想要找到一个新的位置或打入市场,应该紧跟行业趋势,熟悉各种挖掘和分析技术。求职的最佳实践--比如定制简历和谨慎使用关键词--也可以帮助他们获得面试机会。
通过使用这些技术,您可以在众多竞争对手中脱颖而出,并获得理想的数据科学工作。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21