数据科学家泰勒·理查兹@脸书
大约每个月,我都会收到一封电子邮件,问我如何进入数据科学,我已经回答得够多了,所以我决定把它写在这里,这样我就可以把人们链接到它。所以如果你是这些学生中的一员,欢迎!
我将把它分成基本的建议,如果你只在谷歌上搜索“如何进入数据科学”,就可以很容易地找到这些建议,以及不太常见的建议,但我多年来发现这些建议非常有用。我将从后者开始,然后转向基本建议。显然,对此要半信半疑,因为所有的建议都带有一点生存偏见。
1。查找坚实的社区
如果你在大学里,在那里的一半意义是找到像你这样聪明、有抱负、有动力的人来学习和成长。对我的母校来说,这个社区是数据科学和信息学俱乐部。社区/网络帮助你开始,让你保持动力,并且是获得实习和长期全职工作的关键。
2。将数据科学应用于您喜欢的事物
擅长任何事情都很难(杜),将数据科学应用到你关心的领域或领域可以帮助你保持动力并脱颖而出。我举了几个例子:Usinguf(母校)的学生政府选举,学习机器学习方法,或者通过记录我们的乒乓球比赛来跟踪我朋友的Elo成绩。这些项目教会了我基本的技能,但没有明显的工作感觉。
获得代表你将来想要执行的工作的有用的实践是至关重要的,因为通过这种实践,你只能得到两件事中的一件:
a.意识到你实际上并不喜欢这种类型的数据科学,在这种情况下,你应该立即停止阅读
B.你可以很容易地写(博客)或谈论(给想付钱给你的人)的宝贵经验
这就引出了我的下一个观点。
3。尽量减少“能力证明点击”
招聘人员会花15秒在你的简历上,潜在团队会花1-5分钟(最多)在你的简历+网站/GitHub上(访问者tomy投资组合网站平均会花2分16秒再继续)。这两个群体都经常使用GPA、学校质量或科技公司数据的经验等能力指标(我称之为身份证明)。因此,你应该仔细考虑向读者发出信号所需的时间,告诉他们你可以做他们想招聘的任何工作。要考虑的一个粗略指标是点击证明能力。
如果招聘人员不得不点击Github中正确的存储库,然后点击文件,直到他们发现Jupyter笔记本中有不可读的代码(但没有注释),你就已经输了。如果招聘人员在你的简历上看到机器学习,但你需要点击5次才能看到任何ML产品或代码,你就已经输了。任何人都可以在简历上撒谎;用一个观点来迅速引导读者的注意力,你就会处于一个明显更好的位置。
在我的网站上,我想优化这个指标的方式非常清楚。浏览文本大约需要10秒钟(我敢打赌大多数人不会一直读下去),然后人们可以立即选择一个数据科学项目来查看,这些项目根据它们展示我所能做的工作的程度进行排序。对于在DS中开始,我强烈建议制作一个网站(即使是一个引导模板网站也很好),并将其托管在Github页面或heroku上。
4。通过研究或入门级工作学习
在你做了这三件事之后,看看你是否能说服某人付钱给你学习数据科学。我喜欢UF有一个很棒的选举数据科学小组(麦克唐纳博士和史密斯博士目前负责),但如果你去任何一个研究小组采访他们,他们可能会为你的工作付钱。最终,有了这样的经验,你就可以申请实习并获得丰厚的报酬。这里的关键是不要一开始就寻找那些令人难以置信的花哨的DS实习机会,而是在当地有数据科学任务但没有足够的钱雇佣一名全职数据科学家的公司或研究小组。数据科学学习快速复合,所以现在就开始吧!考虑到所有这些,让我们继续讨论更基本的建议。
数据科学主要是应用于任何领域的编程和统计,所以这两个领域的背景是至关重要的。
1。统计信息
尽快获得一个良好的统计背景(参加课程,在线学习)。教科书会带你走得更远,好奇心会带你走得更远。
书籍/资源:
2。编程
学习Python或R,并真正擅长它。每天做一些新的事情,每周至少花5-10个小时在上面。在此之后学习SQL。你不能跳过这个。
书籍/资源:
3。业务经验
在宝洁,我的数据科学工作被应用于零售业。在脸书,诚信问题。保护民主,呃,民主。学习数据科学在某些业务环境中的应用是很困难的,需要实践,并且通常涉及到对度量、产品分析和激励结构的扎实理解。这非常符合第二个不太基本的建议。
学习数据科学很难,但我发现它非常有价值。我给你的最后一个提议,作为阅读这篇长篇文章的交换,是说一旦你把数据科学应用到你感兴趣的问题上,并把它发布到网上的某个地方,在推特上把它写给我,我保证会阅读并转发它。祝你好运!
数据分析咨询请扫描二维码
在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16在当今数据驱动的世界中,数据分析师的角色越发重要。他们不仅承担着从复杂的数据集中抽取洞察的任务,还需要用技术和洞察力引导 ...
2024-12-16数据分析师的日常工作就像是在数据的海洋中寻找宝藏,而掌握函数的使用技巧,是让这一探索旅程更加高效和精准的关键。在分析这个 ...
2024-12-16在今天这个数据驱动的世界,数据分析专业已成为推动商业决策和策略的重要力量。无论是初创公司还是全球性企业,数据分析的需求日 ...
2024-12-16在现代数据驱动的世界里,数据分析是不可或缺的一部分。无论是企业战略决策,还是科研创新,都离不开数据分析的支持。随着数据的 ...
2024-12-16数据分析正如一门通向商业智慧的大门,为众多企业提供了决策依据。探究其背后,我们发现,数据分析员在这个领域中扮演着至关重要 ...
2024-12-16