热线电话:13121318867

登录
首页大数据时代【干货】常用的数据分析方法你会几种?大部分人只会两种
【干货】常用的数据分析方法你会几种?大部分人只会两种
2025-03-06
收藏

在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本文来为大家科普几种数据分析的概念和方法。

一、描述性分析

描述性分析是数据分析的基础,主要通过对数据的集中趋势、离散程度和分布形态等进行概括和描述,让我们对数据有一个初步的整体认识。

比如,我们想了解一家公司员工的薪资情况。通过计算平均值,能知道员工薪资的总体水平;中位数可以帮助我们找到处于中间位置的薪资值,避免受到极端值的过度影响;众数则能告诉我们出现频率最高的薪资金额。而标准差方差等指标,能让我们清楚薪资的离散程度,即员工薪资之间的差异大小。

再以电商平台某商品的销售数据为例,通过描述性分析,我们可以了解该商品的平均销量、销量波动范围,以及不同价格区间的销售分布情况。这些信息为后续更深入的分析奠定了坚实基础。

二、探索性分析:挖掘数据潜藏信息

探索性分析则鼓励我们在数据中自由地发现那些隐藏在表面之下的规律和模式。它不拘泥于特定的假设,而是通过各种可视化工具和统计方法,让数据自己 “说话”。

假设我们有一份社交媒体用户行为数据,通过绘制柱状图,我们可能会发现用户不同倾向之间对比起来哪项数据更需要优化;

通过聚类分析,也许能将用户分为不同的群体,每个群体都有独特的行为特征。探索性分析就像一个指南针,为我们指引进一步分析的方向,帮助我们提出有价值的问题和假设。

三、相关性分析:洞察数据关联

数据分析概念里,很多变量之间并非孤立存在,相关性分析能告诉我们两个或多个变量之间是否存在关联,以及关联的紧密程度。

例如,在分析某城市房价与城市人均收入的关系时,通过相关性分析,如果得出两者的相关系数较高,说明房价与人均收入之间存在较强的正相关关系,即人均收入增加,房价可能也会随之上升。

但要注意,相关性并不等同于因果关系,我们还需要进一步深入分析来确定因果机制。相关性分析在市场调研、金融风险评估等众多领域都有着广泛的应用,帮助我们从纷繁复杂的数据中找到关键的关联线索。

四、回归分析:预测未来趋势

回归分析是一种强大的数据分析方法,它不仅能揭示变量之间的关系,还能基于这种关系进行预测。

以某电子产品的销售数据为例,我们可以将销售量作为因变量,将价格、广告投入、市场竞争程度等作为自变量,构建回归模型。

通过对历史数据的拟合和分析,我们就能预测在不同价格策略、广告投入水平下,产品未来的销售量。这对于企业制定生产计划、营销策略以及资源分配都具有重要的指导意义。

回归分析在经济预测、销售预测、需求预测等方面都发挥着关键作用,帮助企业提前布局,抢占市场先机。

AI时代,数据是新时代的石油,其改变不仅仅是产业的格局,还有人的认知与决策模式大数据时代,我们收集的数据越来越多,但如何从海量的数据中提取到有价值的信息却越来越难,而数据分析就是从海量的原始数据中获取有价值信息的过程。通过数据收集、清洗、加工和整理,使用科学的统计方法、工具、可视化技术、算法等获取有价值的信息或现象的洞察,以此帮助企业和个人做出更明智的决策。

推荐学习书籍

CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0

最新资讯
更多
客服在线
立即咨询