罗曼·奥拉克,数据科学家。
我收到许多信息,向有抱负的数据科学家寻求建议。我不是职业建议方面的专家,所以对我写的一切都持怀疑态度。
我根据我对这个领域的观察和我多年来积累的经验给出建议。这是我,建议年轻的我,因为我有类似的问题,在我的职业生涯开始。
我的建议是从实际项目开始,然后慢慢地进行理论研究。Kaggle笔记本是学习实际部分的好方法。
在Reddit社区或交叉验证社区中提问。
当您对自己的工具和实践知识感到满意时,我建议您自己为某些问题构造数据集(例如,您可以刮取数据),并对其应用ML算法。ML中最难的是数据集的构造。你甚至可以用它建立一个公司。
Kaggle是学习实际部分的一个很好的方法。
我建议您从免费资源开始,因为有许多免费资源可用于编程、机器学习和数据科学:
我个人很喜欢吴恩达的Machine LearningCoursera课程。这门课程开始很容易,然后随着它的进行逐渐变得困难。它的优点在于它专注于机器学习的基础知识。
我建议你至少听前几堂课。如果你不明白所有的事情,也不要担心,因为你可以在以后重温它。我也建议你不要只专注于一个课程。我们学得都不一样,没关系。
我们学得都不一样,没关系。
不要一个人学习!寻找并加入能帮助你学习和成长的在线社区。我在以下文章中写过关于数据科学社区的文章:
您可以开始在Excel中练习机器学习。尝试在Excel中实现线性回归。这是一个很好的第一个挑战,它会让你有动力。
开始在Excel中练习机器学习。
让我们对房间里的大象讲话。如果您刚刚起步,我建议您学习Python。主要原因有:
使用Python,您可以进行分析,从头开发模型,然后在生产中运行它。虽然我确信R中的模型也在生产中运行,但我还没有听说过(如果您的经验不同,请在评论中告诉我)。
别误会,如果你知道R,那完全没问题。数据科学团队通常使用这两种语言,一些人喜欢R,另一些人喜欢Python。
最后,这并不重要,因为有些模型必须用编译语言(Java,Go)重新实现,以便在生产中做出更快的预测。
Python使您能够进行分析、从头开发模型并在生产中运行它。
这是个很棒的问题。答案是肯定的--用大写字母。
无论您是否使用SQL数据库,您都应该了解关系数据库中的主要概念,如joins、group by、window functions、lag、lead等。即使在使用pandas、R或其他工具时,这些概念也是必不可少的。
如果您感兴趣,我还写了几篇关于SQL的文章:
答案是肯定的--用大写字母。
你知道的数学越多,从长远来看对你越好。了解数学将使您能够理解黑匣子机器学习模型的幕后发生了什么。从理论到实践的知识转移也更容易。
有了数学,你就会明白黑匣子模型的幕后发生了什么。
当你需要改进模型时,数学就变得至关重要。您需要数学来理解不同类型的模型、发行版等之间的差异。
资深机器学习工程师只需看优化函数就能说出一个模型的主要性质。
当你试图改进模型时,数学变得至关重要。
我的建议是提前考虑。每个领域都需要一名数据科学家,或者将来也会需要。问问自己,完成学业后,你希望在哪家公司实习?如果你已经听过一些相关的课程,就更容易获得生物信息学的实习机会。
提前想想。
你不需要博士学位。从事数据科学工作--意味着对现实世界的数据进行分析,并应用机器学习模型。
如果你的目标是做研究和开发新的机器学习算法(例如,在Deep Mind工作),那么你应该攻读博士学位。
你不需要博士学位。从事数据科学工作,但是...
参加LocalMeetups。公司在那里寻找新雇员。也许从数据质量评估部门开始--大公司有这些。在线社区也能有所帮助。
参加当地的聚会。
最近,我写道,“当你有多个工作机会时,接受一个有更好导师的工作机会。”
你怎么知道哪家有最好的导师?在面试过程中尽可能多地了解团队成员、经理、他们的背景等信息。查看他们的LinkedIn。他们在Quora、StackOverflow、Medium上写吗?做你的研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13