作者Yulia Lukashina,技术作家。
我完全相信每个人都能做好(赚到好钱!)只有在他们喜欢做的工作中。如果你对你的任务感到无聊,每天都不得不强迫自己,你就不能交付高质量的结果。
但如果数据科学让你感到温暖和轻盈,那么你就选对了打开的大门。你到底是怎么知道的?
或者你的仪表板,你的管道,或者你正在建造的任何东西。你感觉像一个工匠看着他的创作,享受着它的完美。
您对添加的每一行代码都感到更高兴,使您更接近结果。你喜欢打字。您喜欢毫不费力地从记忆中回忆函数,并将它们融入您以前概述的处理逻辑中。
你喜欢学习新的函数和扩大你的“词汇量”。你觉得自己就像一个外语课程的学生,开始理解以前是个谜的单词。
长代码并不总是质量的标志。但你也喜欢优化!您喜欢用刚刚学习的包中的现有函数替换笨拙的自发明函数。
或者您甚至向GitHub提交一个新包,让更多的人使用它!
您喜欢优雅的代码行的外观,它取代了复杂且不可伸缩的解决方案。你喜欢回到你写过的东西,让它变得更好。
嗯,如果您有一个最后期限要掌握,错误消息可能会非常令人沮丧。但好奇心总是好兆头!
你认为,
哇,我的宝贝和我说话!
并咨询搜索引擎的含义。然后您学习工具或编程语言的一个新的方面。你很高兴消费新知识,获得一个达到智慧新水平的机会。
是的,错误信息让我们继续前进!
即使它们一点也不比旧的好。即使它们乱七八糟,违反直觉,您仍然喜欢学习新的数据科学工具。只是因为它让你觉得自己像一个在沙盒里的孩子,建造一个没有人会住的沙堡。
您喜欢深入到新工具并抓住其背后的逻辑。你喜欢逆向工程,你不认为这是浪费你的时间。
每一个新的工具都为你打开了新的思维方式,打开了新问题的新视角,打开了旧分析方法的新角度。
而且它也可能为你的数据科学简历增加价值!
你可能是一个害羞的人,避免公开演讲或在大量观众面前做报告。但你不会克制地回答你最好的朋友关于你工作的问题。你在半意识的层面上为自己的专业领域感到自豪。
你谈论它不是因为你喜欢说话和给人留下深刻印象,而是因为你的职业是你身份的一部分。你可以做你自己,分享你认为重要的东西。
你喜欢在他们的脸上看到理解,理解一件复杂的事情的喜悦,这件事情曾经是激动人心的魔法。你喜欢指导你的学生或同事通过设置,回答他们的问题,消除他们对自己能力的怀疑。
你喜欢培养新一代的数据科学家,或者至少是超级用户。你会感觉到越来越多的人加入了你的秘密数据科学“集团”。
你得到的是原始数据,它没有显示出任何系统化的迹象。那会让你发疯的!
然后,一步一步地,你做一些数据清理,转换它,然后--瞧!-您可以看到清晰的维度、模式和可能的依赖关系。这就像是从飞机的窗户上看飞机起飞时。你当时站在机场大楼附近,但后来你逐渐变得越来越高,突然间你立刻看到了整个城市!
…包括你每周去附近的杂货店。你有一个清单,你有一个计划,哪些货架过去,按什么顺序。不是说你的时间太少,但优化购物路线似乎只是一件很自然的事情!
好吧,这可能是一种夸张。我的观点是,如果你热爱数据科学,你可以在空闲时间继续做。
当我在两个让我感到快乐的领域--数据科学和技术写作--定居后,我的职业生涯开始更加有机地发展。我不再为下一个漂亮的头衔而战。我吸收了新知识,却不考虑眼前的回报。这种态度开始得到回报,尽管确实需要一点耐心。
当你以良好的感觉结束一天时,第二天早上你会更有效率。当你散发出冷静和自信时,你就可以不再担心工作竞争。公司会因为你是一个理性和安全的人而雇佣你:除了是一个高效的数据科学家!
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21