数据科学家和人工智能爱好者Dhilip Subramanian
数据科学、机器学习和人工智能是近几年来的热门领域。许多人想成为数据科学家,并通过大学、在线课程或自学投入巨大努力来提升他们的技能。然而,在现实世界中,在工作和解决业务问题方面有很多挑战。作为一名数据科学家,非技术技能同样重要。在这个博客中,我分享了我作为一名数据科学家在工作中遇到的个人经验。
现实世界中有很多挑战,学生在大学里不一定要面对。在学校里,他们通常会得到一个结构化的问题和一个流行的数据集,最终得到精确的解决方案。然而,行业中的问题往往是非结构化的和复杂的。对这个问题的任何假设都会在现实世界中适得其反。在深入分析之前,最好完全了解业务问题。理解业务问题需要对问题及其领域进行更多的研究,计划,向客户提出正确的问题,并与团队成员进行讨论。
数据科学是关于逻辑思维,在解决问题时产生更多的想法和创造力。因此,团队合作在数据科学中扮演着重要的角色。多维度而不是单维度思考也是必要的。团队成员可能来自不同的背景,拥有不同的技能。采取每个小组成员的力量,并相应地分配工作。这帮助我用不同的方法解决了这个问题,并学到了新的东西。
另一个关键技能是做一个好的倾听者。数据科学是关于共享和协作的。基本上,这个人需要理解团队中其他人的观点。很多时候,其他团队成员提出了好的想法,这些想法可能是独特的,为了在项目中成功地实施,有必要倾听和理解它们。正如我上面所说,数据科学不是一个人的表演,它总是一个团队的努力。
数据科学或AI是一个快速发展的领域,因此,总会有一些新的和至关重要的东西需要学习。很难记住所有的东西,文档帮助我克服了这个挑战。此外,它帮助我明确了自己的思维过程。我曾经记录我的学习,分析,模型过程,实验和代码。此外,我把失败的实验和原因写得很详细,这有助于我从长远来看提高我的想法。除此之外,它还帮助我改进了我的沟通和对概念的详细理解。你甚至可以记录你学到的或遇到的小事,这些小事从长远来看会有很大的不同。使用您自己方便的工具来记录。
在敏捷环境中工作让我在每个冲刺开始时都有明确的计划、优先级和方向。拥有敏捷的心态有助于应对变化和处理不确定性。如果你遇到了不确定性,尝试选择,收集反馈并不断改进。这也给了我一个与不同团队合作的机会。在每个sprint结束时,以机器学习模型的形式向涉众展示最小可行产品(MVP)有助于我以更好的形式塑造我的项目。此外,每个sprint结束时的反馈帮助我纠正错误并高效地交付项目。
讲故事是数据科学的重要组成部分。我们正在处理数据,创建一个模型,并找到洞察力。但是,这个模型在商业术语中说明了什么?换句话说,这个模型是如何为公司赚钱或解决问题的?利益相关者和管理层对P值或任何其他统计数据都不感兴趣。这里的主要挑战是以一种吸引人的方式用更简单的术语向非技术观众解释模型。通过一个小故事来解释模型的一种方法。这是我去年学到的最大的东西之一。始终,包括良好的可视化,它有助于传达的信息作为一个故事。讲故事是一门艺术,它需要时间和大量的练习。
我们总是使用传统的PPT向客户或利益相关者展示我们的工作。我们为什么不创建一个web应用程序或仪表板来解释我们的模型输出,而不是PPT呢?创建web应用程序或仪表板显示了对项目的承诺,并与涉众和客户建立了联系。
版本控制是每个人都包括在工作流中的重要事情。它有助于集中管理代码,而不是将其保存到PC/Laptop或外部驱动器中。这样,每当您在任何位置处理新项目时,都可以参考代码或文档。
在过去的8个月里,我显著地提高了我的编码技能。我在工作和比赛中学到的一件事是编写函数式或面向对象的代码,以获得最大的代码重用性。这将有助于在未来的项目中使用代码,并减少当前项目的时间。每当我提到stackoverflow或google时,我都会记录代码函数,这有助于我学习编码方面的新知识。始终遵循最佳实践,并保持代码阅读器友好。
数据科学是计算机科学、统计学、机器学习和领域专业知识的融合。因此,它需要有处理不同步骤的技能,从清理数据到解释最终模型并部署它。不要被吓倒,你不可能在一天内掌握数据科学。因此,如果您陷入困境,请随时寻求帮助,通过这些帮助您将获得更多知识,并最终使您对自己的方法充满信心。
人工智能是IT行业的新热点,让我们直面这样一个事实:所有这些都不可能在短时间内被任何人同化。决定从战略上采取行动,每天投入一两个小时学习新概念和解决新问题,包括学习新算法、编码、阅读博客、做个人项目等。除此之外,我强烈建议阅读非技术书籍,这些书籍对流程和讲故事技巧有很大帮助,这将是我们继续前进的一个有用的特征。
在我最初的日子里,我的印象是,在这个分析的世界里,每个人都是一切的主人。但后来我意识到我的假设是错误的。我明白这对这里的每个人来说都是一个不断学习的过程。在这个游戏中保持最新的核心是激情、好奇心和渴望了解更多。无论是机器学习、深度学习还是NLP,解决复杂问题的总是激情。
免责声明-此博客包含我的个人经历。如果这些信息对你有所帮助,我很想听听。
感谢阅读!
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21