df = pd.DataFrame({'专业': np.repeat(['数学与应用数学', '计算机', '统计学','物理学'], 6),
'班级': ['1班','2班','3班']*8,
'科目': ['高数', '线代'] * 12,
'平均分': [random.randint(60,100) for i in range(24)],
'及格人数': [random.randint(30,50) for i in range(24)]})
df2 = pd.pivot_table(df, index=['专业','科目'], values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
df2
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 107 | 76.000000 |
高数 | 107 | 65.000000 | |
物理学 | 线代 | 111 | 82.333333 |
高数 | 115 | 78.666667 | |
统计学 | 线代 | 107 | 71.000000 |
高数 | 122 | 74.000000 | |
计算机 | 线代 | 122 | 78.333333 |
高数 | 137 | 74.000000 |
stacked = df2.stack()
“压缩”后的DataFrame或Series(具有MultiIndex作为索引), stack() 的逆操作是unstack(),默认情况下取消最后压缩的那个级别:
堆叠stack()
,顾名思义就是把透视结果堆到一起。接下来我们把透视后堆叠的数据一步步展开unstack()
:
stacked.unstack()
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 107.0 | 76.000000 |
高数 | 107.0 | 65.000000 | |
物理学 | 线代 | 111.0 | 82.333333 |
高数 | 115.0 | 78.666667 | |
统计学 | 线代 | 107.0 | 71.000000 |
高数 | 122.0 | 74.000000 | |
计算机 | 线代 | 122.0 | 78.333333 |
高数 | 137.0 | 74.000000 |
stacked.unstack(level=1)
科目 | 线代 | 高数 | |
---|---|---|---|
专业 | |||
数学与应用数学 | 及格人数 | 107.000000 | 107.000000 |
平均分 | 76.000000 | 65.000000 | |
物理学 | 及格人数 | 111.000000 | 115.000000 |
平均分 | 82.333333 | 78.666667 | |
统计学 | 及格人数 | 107.000000 | 122.000000 |
平均分 | 71.000000 | 74.000000 | |
计算机 | 及格人数 | 122.000000 | 137.000000 |
平均分 | 78.333333 | 74.000000 |
stacked.unstack(level=0)
专业 | 数学与应用数学 | 物理学 | 统计学 | 计算机 | |
---|---|---|---|---|---|
科目 | |||||
线代 | 及格人数 | 107.0 | 111.000000 | 107.0 | 122.000000 |
平均分 | 76.0 | 82.333333 | 71.0 | 78.333333 | |
高数 | 及格人数 | 107.0 | 115.000000 | 122.0 | 137.000000 |
平均分 | 65.0 | 78.666667 | 74.0 | 74.000000 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03