数据重塑,顾名思义就是给数据做各种变形,主要有以下几种:
根据索引(index)、列(column)(values)值), 对原有DataFrame(数据框)进行变形重塑,俗称长表转宽表
import pandas as pd
import numpy as np
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
长转宽:使用 df.pivot
以姓名
为index
,以各科目
为columns
,来统计各科成绩:
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
df.pivot(index='姓名', columns='科目', values='成绩')
科目 | 数学 | 英语 | 语文 |
---|---|---|---|
姓名 | |||
张三 | 80 | 100 | 91 |
李四 | 100 | 96 | 80 |
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df1 = pd.pivot(df, index='姓名', columns='科目', values='成绩').reset_index()
df1
科目 | 姓名 | 数学 | 英语 | 语文 |
---|---|---|---|---|
0 | 张三 | 80 | 100 | 91 |
1 | 李四 | 100 | 96 | 80 |
宽表变长表:使用 pd.melt
以姓名
为标识变量的列id_vars
,以各科目
为value_vars
,来统计各科成绩:
df1.melt(id_vars=['姓名'], value_vars=['数学', '英语', '语文'])
姓名 | 科目 | value | |
---|---|---|---|
0 | 张三 | 数学 | 80 |
1 | 李四 | 数学 | 100 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 英语 | 96 |
4 | 张三 | 语文 | 91 |
5 | 李四 | 语文 | 80 |
random.seed(1024)
df = pd.DataFrame(
{'专业': np.repeat(['数学与应用数学', '计算机', '统计学'], 4),
'班级': ['1班','1班','2班','2班']*3,
'科目': ['高数', '线代'] * 6,
'平均分': [random.randint(60,100) for i in range(12)],
'及格人数': [random.randint(30,50) for i in range(12)]})
df
专业 | 班级 | 科目 | 平均分 | 及格人数 | |
---|---|---|---|---|---|
0 | 数学与应用数学 | 1班 | 高数 | 61 | 34 |
1 | 数学与应用数学 | 1班 | 线代 | 90 | 42 |
2 | 数学与应用数学 | 2班 | 高数 | 84 | 33 |
3 | 数学与应用数学 | 2班 | 线代 | 80 | 43 |
4 | 计算机 | 1班 | 高数 | 93 | 34 |
5 | 计算机 | 1班 | 线代 | 66 | 43 |
6 | 计算机 | 2班 | 高数 | 88 | 45 |
7 | 计算机 | 2班 | 线代 | 92 | 44 |
8 | 统计学 | 1班 | 高数 | 83 | 46 |
9 | 统计学 | 1班 | 线代 | 83 | 41 |
10 | 统计学 | 2班 | 高数 | 84 | 49 |
11 | 统计学 | 2班 | 线代 | 66 | 49 |
各个专业对应科目的及格人数和平均分
pd.pivot_table(df, index=['专业','科目'],
values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 85 | 85.0 |
高数 | 67 | 72.5 | |
统计学 | 线代 | 90 | 74.5 |
高数 | 95 | 83.5 | |
计算机 | 线代 | 87 | 79.0 |
高数 | 79 | 90.5 |
补充说明:
df.pivot_table()
和df.pivot()
都是Pandas中用于将长表转换为宽表的方法,但它们在使用方式和功能上有一些区别。
使用方式:
处理重复值:
聚合操作:
总的来说,df.pivot()
方法适用于长表中不存在重复值的情况,而df.pivot_table()
方法适用于长表中存在重复值的情况,并且可以对重复值进行聚合操作。根据具体的数据结构和分析需求,选择合适的方法来进行转换操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20