
数据重塑,顾名思义就是给数据做各种变形,主要有以下几种:
根据索引(index)、列(column)(values)值), 对原有DataFrame(数据框)进行变形重塑,俗称长表转宽表
import pandas as pd
import numpy as np
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
长转宽:使用 df.pivot
以姓名
为index
,以各科目
为columns
,来统计各科成绩:
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df
姓名 | 科目 | 成绩 | |
---|---|---|---|
0 | 张三 | 语文 | 91 |
1 | 张三 | 数学 | 80 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 语文 | 80 |
4 | 李四 | 数学 | 100 |
5 | 李四 | 英语 | 96 |
df.pivot(index='姓名', columns='科目', values='成绩')
科目 | 数学 | 英语 | 语文 |
---|---|---|---|
姓名 | |||
张三 | 80 | 100 | 91 |
李四 | 100 | 96 | 80 |
df = pd.DataFrame(
{ '姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语'],
'成绩': [91, 80, 100, 80, 100, 96]})
df1 = pd.pivot(df, index='姓名', columns='科目', values='成绩').reset_index()
df1
科目 | 姓名 | 数学 | 英语 | 语文 |
---|---|---|---|---|
0 | 张三 | 80 | 100 | 91 |
1 | 李四 | 100 | 96 | 80 |
宽表变长表:使用 pd.melt
以姓名
为标识变量的列id_vars
,以各科目
为value_vars
,来统计各科成绩:
df1.melt(id_vars=['姓名'], value_vars=['数学', '英语', '语文'])
姓名 | 科目 | value | |
---|---|---|---|
0 | 张三 | 数学 | 80 |
1 | 李四 | 数学 | 100 |
2 | 张三 | 英语 | 100 |
3 | 李四 | 英语 | 96 |
4 | 张三 | 语文 | 91 |
5 | 李四 | 语文 | 80 |
random.seed(1024)
df = pd.DataFrame(
{'专业': np.repeat(['数学与应用数学', '计算机', '统计学'], 4),
'班级': ['1班','1班','2班','2班']*3,
'科目': ['高数', '线代'] * 6,
'平均分': [random.randint(60,100) for i in range(12)],
'及格人数': [random.randint(30,50) for i in range(12)]})
df
专业 | 班级 | 科目 | 平均分 | 及格人数 | |
---|---|---|---|---|---|
0 | 数学与应用数学 | 1班 | 高数 | 61 | 34 |
1 | 数学与应用数学 | 1班 | 线代 | 90 | 42 |
2 | 数学与应用数学 | 2班 | 高数 | 84 | 33 |
3 | 数学与应用数学 | 2班 | 线代 | 80 | 43 |
4 | 计算机 | 1班 | 高数 | 93 | 34 |
5 | 计算机 | 1班 | 线代 | 66 | 43 |
6 | 计算机 | 2班 | 高数 | 88 | 45 |
7 | 计算机 | 2班 | 线代 | 92 | 44 |
8 | 统计学 | 1班 | 高数 | 83 | 46 |
9 | 统计学 | 1班 | 线代 | 83 | 41 |
10 | 统计学 | 2班 | 高数 | 84 | 49 |
11 | 统计学 | 2班 | 线代 | 66 | 49 |
各个专业对应科目的及格人数和平均分
pd.pivot_table(df, index=['专业','科目'],
values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 85 | 85.0 |
高数 | 67 | 72.5 | |
统计学 | 线代 | 90 | 74.5 |
高数 | 95 | 83.5 | |
计算机 | 线代 | 87 | 79.0 |
高数 | 79 | 90.5 |
补充说明:
df.pivot_table()
和df.pivot()
都是Pandas中用于将长表转换为宽表的方法,但它们在使用方式和功能上有一些区别。
使用方式:
处理重复值:
聚合操作:
总的来说,df.pivot()
方法适用于长表中不存在重复值的情况,而df.pivot_table()
方法适用于长表中存在重复值的情况,并且可以对重复值进行聚合操作。根据具体的数据结构和分析需求,选择合适的方法来进行转换操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02