在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口分布、还是疫情传播,地图都能提供一目了然的信息。本文将详细介绍如何使用Pyecharts绘制地图,适合数据分析小白入门。
地图在数据分析中的应用非常广泛,以下是一些常见的应用场景:
Pyecharts是一个基于Echarts的Python可视化库,能够轻松生成各种精美的图表。Echarts是百度开源的一个数据可视化工具,支持多种图表类型,包括折线图、柱状图、饼图、地图等。Pyecharts使得在Python中使用Echarts变得非常简单。
在开始之前,我们需要先安装Pyecharts。可以通过以下命令安装:
pip install pyecharts
pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
from pyecharts import options as opts
from pyecharts.charts import Map
地图数据通常是一个包含地区名称和对应数值的列表。例如:
data = [("北京市", 100), ("上海市", 200), ("广东省", 300), ("四川省", 400), ("陕西省", 500)]
接下来,我们创建一个地图对象,并设置地图类型为“china”:
map_chart = Map()
map_chart.add("示例地图", data, "china"
,zoom=1.5 # 设置缩放
,center=[100, 36] # 设置默认中心位置
,is_roam=False # 禁用缩放 拖拽
)
map_chart.render_notebook()
为了让地图更加美观,我们可以设置一些全局配置,例如标题、视觉映射等:
map_chart.set_global_opts(
title_opts=opts.TitleOpts(title="中国地图示例"),
visualmap_opts=opts.VisualMapOpts(max_=500)
)
map_chart.render_notebook()
最后,我们还可以将地图渲染为HTML文件:
map_chart.render("china_map.html")
运行上述代码后,会在当前目录下生成一个名为china_map.html的文件。打开这个文件,你就可以看到一个交互式的中国地图,鼠标悬停在各个省份上时,会显示对应的数值。
为了让地图更加精美,我们可以从以下几个方面进行优化:
通过设置visualmap_opts中的is_piecewise=True,我们可以使用分段颜色来展示数据:
map_chart.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
is_piecewise=True,
pieces=[
{"min": 0, "max": 100, "label": "0-100", "color": "#FFE4E1"},
{"min": 101, "max": 200, "label": "101-200", "color": "#FF7F50"},
{"min": 201, "max": 300, "label": "201-300", "color": "#FF4500"},
{"min": 301, "max": 400, "label": "301-400", "color": "#FF0000"},
{"min": 401, "max": 500, "label": "401-500", "color": "#8B0000"},
]
)
)
Pyecharts还支持3D地图,可以通过Map3D图表来启用:
from pyecharts.charts import Map3D
example_data = [
[[119.107078, 36.70925, 1000], [116.587245, 35.415393, 1000]],
[[117.000923, 36.675807], [120.355173, 36.082982]],
[[118.047648, 36.814939], [118.66471, 37.434564]],
[[121.391382, 37.539297], [119.107078, 36.70925]],
[[116.587245, 35.415393], [122.116394, 37.509691]],
[[119.461208, 35.428588], [118.326443, 35.065282]],
[[116.307428, 37.453968], [115.469381, 35.246531]],
]
(Map3D()
.add_schema(
maptype="山东",
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
view_control_opts=opts.Map3DViewControlOpts(center=[-10, 0, 10]),
post_effect_opts=opts.Map3DPostEffectOpts(is_enable=False),
)
.add(
series_name="",
data_pair=example_data,
type_=ChartType.LINES3D,
effect=opts.Lines3DEffectOpts(
is_show=True,
period=4,
trail_width=3,
trail_length=0.5,
trail_color="#f00",
trail_opacity=1,
),
linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D-Lines3D"))
.render("map3d_with_lines3d.html")
)
通过设置map_style,我们可以自定义地图的样式,例如背景颜色、边界颜色等:
map_chart.set_series_opts(
label_opts=opts.LabelOpts(is_show=False),
itemstyle_opts=opts.ItemStyleOpts(color="blue", border_color="black",area_color="green")
)
数据可视化是数据分析师需要掌握的重要技能,也是CDA数据分析师一级的重要考点,如果你想实操一下自己的可视化技能。
相信你已经掌握了如何使用Pyecharts绘制地图的基本方法。地图作为一种强大的数据可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。通过不断优化地图的样式和交互效果,我们可以让数据展示更加生动和直观。
希望这篇文章能够帮助你在数据分析的道路上更进一步!如果你有任何问题或建议,欢迎在评论区留言讨论。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
推荐学习:https://edu.cda.cn/goods/show/3243?targetId=5333&preview=0
在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-24“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01