数据分析这个技能,到底能不能速成
没有任何牛逼的事情是能够速成的,越是像数据分析这种收益周期长的技能,掌握起来越是这样。
但这并不代表,我们不能以一些更有效的方式,把学习的过程变得高效而有趣。
学习一门技术之前,你应该知道,你想要达成的目标是什么样的,也就是说,你想通过这门技术来解决哪些问题,应用在哪些行业,哪些业务场景下。只有这一点想通了,你的数据分析之路的学习才是高效的、有目的的、有意义的。
CDA数据分析师自2013年成立以来,培养了上万名学员跻身数据分析师行列,我们通过对部分学员的需求表进行文本分析,让我们来看看学习数据分析的学员都想学什么?
一、 学习目标分析&学习结果
从关键词和文本摘要提取可以得到学员学习目标主要为:
A. 掌握数据分析&数据挖掘理论、方法和实践;熟练掌握统计分析软件如
SPSS,SAS,SPSS,R 等;—成为优秀的数据分析师;提升职业竞争力;
B. 应用数据分析于学术、商业领域的实践,解决实际问题;
C. 就业考证,升职加薪;
D. 掌握数据分析实战能力,实现转行。
二、学员行业及公司背景
通过上述 word2vec 图和词云图,可以看出CDA 的学员来自于各行各业,数据分析是一个具有广泛应用和发展前景的行业,有的来自于工业,如化工、航天、能源、制造业;有的来自于财经行业,如证券、新闻、新华网、人民日报;有的来自于娱乐及服务行业。
三、应用领域分析&业务具体问题分析
通过关键词词云和摘要提取可以发现大部分学员比较有目标性,学习的需求全部来自于工作中实际的业务需求。业务主题如:银行信用贷款、客服管理分析、用户行为分析、用户习惯分析、客户关系管理理等。
有了这些目标,下面你需要知道要达成这样的目标,它的知识体系是怎么样的。只有明确的目标导向,配合以最体系化的学习内容,学习最有用的那部分知识,才能避免无效信息降低学习效率,找到成为企业雇主喜爱的数据分析师的最快路径。
根据数据挖掘标准流程CRISP-DM,数据挖掘流程是一个多部门协同产生价值的过程。从业务部门的资讯需求到内外部的数据整合与获取,建置数据仓库,数据挖掘,报表呈现。最终形成可实施的报告或者与工程师合作产生数据产品。
因此,我建议你的学习路径如下(以非编程类分析软件为例):
数据分析是一个快速发展的领域,无论你是刚刚起步还是想拓展现有技能,数据分析师要投入的精力都很多,但是我们保证,回报却更高。
如果你是一个自制力很强而且自身学习极有规划性,那么通过上述的大纲和网上资料教材等自学,你可以很快跻身数据分析师这样一个富有魅力和挑战性的行业。
如果你自身的自制力很弱,面临自学知识难以系统升华?自学过程无人指导?遇到瓶颈无法突破?那么,我们为你设计了一套完整学习方案。
CDA数据分析研究院结合市场和学员需求,首推【CDA数据分析师-周末集训班】课程。职场数据分析师完整学习解决方案,三个月周末学习,顶尖师资带领每周案例实战,毕业分组项目竞技。名额有限,欢迎报名参加!
一、课程信息
北京&远程:2017年12月16日~3月18日(3个月周末)
课程费用:现场班9900元,远程班7900元
授课形式:现场(远程)与视频结合,长期学习加练习答疑。
二、 报名流程
1.在线填写报名信息
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、 课程安排
第一阶段:[线下]Mysql数据库管理
第二阶段:[线上]数据分析之数理统计知识P1
第三阶段:[线上]数据分析之数理统计知识P2
第四阶段:[线下]SPSS数据分析P1
第五阶段:[线下]SPSS数据分析P2
第六阶段:[线下]SPSS案例分析
第七阶段:[线上]Tableau数据可视化
第八阶段:[线上]期中项目作业
第九阶段:[线下]SPSS Modeler数据挖掘P1
第十阶段:[线下]SPSS Modeler数据挖掘P2
第十一阶段:[线下]期末毕业答辩
(详细大纲参照原文链接)
四、课程优惠
4.以上优惠不叠加
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21