大数据时代,互联网时代,电商时代,什么东西越来越重要,不用说都知道是大数据。大数据的分析应用,可以为一个公司、一个企业、一个地区的未来发展规划起到一针见血的作用。随着大数据的火热,关于数据分析师的职业领域也越来越多前仆后继,想在大数据分析领域占得自己的一席之地,可以说,数据分析师前景是非常乐观的,也是发展巨大的。好多人通过努力拼搏终于进入到数据分析领域,从事数据分析领域的工作,但不要以为进入了就可以无忧了。要知道,数据分析领域的薪酬职能差异,决定你在数据分析岗位上的价值大小和对公司的重要程度,你对公司越重要、越有贡献,你在公司的地位和待遇就会越优异而不可轻易更替。除非你不想往上爬,不过这世上有谁会拒绝更好的生活呢?所以啊,在数据分析师前景的道路上,你是选择永远呆着数据分析助理或初级数据分析师领域,还是向上走,走到高级数据分析师、资深数据分析师,甚至是数据科学家、数据分析专家的级别,这一切都看你自己的造化。数据分析领域不同职位薪酬职能差异,下面为你点拨。
数据科学家
与数据最相关的工作头衔大概便是数据科学家。这是一个相对新颖的头衔,但是它正迅速成为最受欢迎的头衔。它甚至被称为”二十一世纪最性感的工作!”
尽管它的名气很响,但是数据科学家的实际作用是最具有争议的一个——可能因为这个角色随着公司的不同而不同。
在所有相关数据中,有一定数量的技能重叠。区分他们最好的办法就是思考一下他们的技能。他们在各种不同的领域是一个通才,但是在一个特定的领域有着深厚的经验。对于一个数据科学家来说,深度体验很可能是在统计和计算机学习中的。
统计和机器学习知识是需要从不同来源获得数据的领域专业知识,创建一个模型,优化其准确性,验证其目的,并确认其意义。至少,数据科学家需要知道如何采用一些数据,显示它,清洁它,过滤它,挖掘它,观察它,然后验证。
除了所有的统计建模,数据科学家还需要知道如何对企业决策者解释他们的发现,了解业务和产品模型,善于解决问题,并且了解一些基本的工程。
最流行的数据科学语言是R和Python语言,不过他们也知道Scala, Java 和 Closure.
“数据科学家是那些好奇的人,盯着数据和趋势。它几乎像一个文艺复兴时期的人,他们真的想把学习和变化带到一个组织。”Anjul Bhambhi,IBM大数据产品副总裁说。
所以,要成为一个数据科学家,你需要在计算机科学,建模,统计,分析和数学上有一个坚实的基础。
他们的作用各不相同,但是总的来说,他们筛选通过所有输入的数据流(包括内部和外部),带着发现新的见解和解决业务问题的目标。然后,他们与组织领导沟通他们的研究结果和建议。
一个数据科学家几乎可以用1000个数据工具来做他们的工作。一切从import.io(数据采集)到Tableau(数据可视化)对RJ Metrics(数据分析)。
工作的技术性(和良好的候选人的短缺),意味着数据科学家们会赚大钱。根据Glassdoor,数据科学家是目前在美国第十五大高薪的工作,平均91,000美元/年和在硅谷110,000美元/年。
数据/业务分析师
像其他的数据科学家一样,数据分析人员在收集、组织和解释统计信息时执行不同的任务。他们主要负责用数据去识别效率,问题区域以及可能的改进。
把它想象为”数据科学”。虽然他们可能没有用数学印章发明新的算法,但是他们有一个很强的如何使用现有的工具来解决问题的认识。他们需要对五个核心竞争力有个基本了解:编程,统计,机器学习,数据修改,数据的可视化。
有人制作图片和报告,以及进行初步研究(如调查)。这部分的工作意味着沟通技巧必不可少的。他们需要把复杂的思想用一种方法让不懂技术的人也能够理解。
业务分析师和数据分析师之间的界限变得如此模糊以至于他们基本上是相同的事情。两者都使用他们的报告和分析去帮助管理者们决策和设定目标。
虽然他们拥有一些技术技能,但是你的传统数据分析师,在技术上是远低于平均数据科学技术。不使用R和Python,他们经营Microsoft Excel, 访问Microsoft, SharePoint和SQL数据库。
因为技能简单,所以会有一个比较低的工资。平均数据分析师的收入约为54,000美元/年。数据分析师来自各种不同的背景,可以包括技术、信息管理、关系数据库的设计和开发、商业智能、数据挖掘或统计等。
数据工程师
从数据分析员的另一边——技术频谱,你会发现数据工程师。
通常来说的软件工程师,数据工程师是数据基础设施的设计者,建设者和管理者。他们负责编制和安装数据库系统,编写复杂的查询,扩展到多台机器,并将灾难恢复系统投入到位。他们还要确保这些系统顺利进行。
数据工程师的核心工作是确保数据流从源到目的地能够顺利进行,并且可以对数据进行处理和分析。这样做,他们需要了解复杂的基于Hadoop的技术(MapReduce,Hive,Pig),SQL技术(PostgreSQL和MySQL),NoSQL技术(卡桑德拉和MongoDB)和数据仓库解决方案。此外,他们还应该熟悉各种编码如Python语言,C/C++,Java,perl,R和更多。
数据工程师可能主要在幕后工作,但是他们是你数据业务生态系统的重要组成部分。因此,他们得到的报酬相当不错,平均每年91,000美元。
收集、储存、分析和展示数据需要一个团队的人。没有任何一个数据工作比其他工作更重要。每个角色都有一个独特的和重要的部分,以确保管理层拥有他们所需要的所有信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31