大数据时代,互联网时代,电商时代,什么东西越来越重要,不用说都知道是大数据。大数据的分析应用,可以为一个公司、一个企业、一个地区的未来发展规划起到一针见血的作用。随着大数据的火热,关于数据分析师的职业领域也越来越多前仆后继,想在大数据分析领域占得自己的一席之地,可以说,数据分析师前景是非常乐观的,也是发展巨大的。好多人通过努力拼搏终于进入到数据分析领域,从事数据分析领域的工作,但不要以为进入了就可以无忧了。要知道,数据分析领域的薪酬职能差异,决定你在数据分析岗位上的价值大小和对公司的重要程度,你对公司越重要、越有贡献,你在公司的地位和待遇就会越优异而不可轻易更替。除非你不想往上爬,不过这世上有谁会拒绝更好的生活呢?所以啊,在数据分析师前景的道路上,你是选择永远呆着数据分析助理或初级数据分析师领域,还是向上走,走到高级数据分析师、资深数据分析师,甚至是数据科学家、数据分析专家的级别,这一切都看你自己的造化。数据分析领域不同职位薪酬职能差异,下面为你点拨。
数据科学家
与数据最相关的工作头衔大概便是数据科学家。这是一个相对新颖的头衔,但是它正迅速成为最受欢迎的头衔。它甚至被称为”二十一世纪最性感的工作!”
尽管它的名气很响,但是数据科学家的实际作用是最具有争议的一个——可能因为这个角色随着公司的不同而不同。
在所有相关数据中,有一定数量的技能重叠。区分他们最好的办法就是思考一下他们的技能。他们在各种不同的领域是一个通才,但是在一个特定的领域有着深厚的经验。对于一个数据科学家来说,深度体验很可能是在统计和计算机学习中的。
统计和机器学习知识是需要从不同来源获得数据的领域专业知识,创建一个模型,优化其准确性,验证其目的,并确认其意义。至少,数据科学家需要知道如何采用一些数据,显示它,清洁它,过滤它,挖掘它,观察它,然后验证。
除了所有的统计建模,数据科学家还需要知道如何对企业决策者解释他们的发现,了解业务和产品模型,善于解决问题,并且了解一些基本的工程。
最流行的数据科学语言是R和Python语言,不过他们也知道Scala, Java 和 Closure.
“数据科学家是那些好奇的人,盯着数据和趋势。它几乎像一个文艺复兴时期的人,他们真的想把学习和变化带到一个组织。”Anjul Bhambhi,IBM大数据产品副总裁说。
所以,要成为一个数据科学家,你需要在计算机科学,建模,统计,分析和数学上有一个坚实的基础。
他们的作用各不相同,但是总的来说,他们筛选通过所有输入的数据流(包括内部和外部),带着发现新的见解和解决业务问题的目标。然后,他们与组织领导沟通他们的研究结果和建议。
一个数据科学家几乎可以用1000个数据工具来做他们的工作。一切从import.io(数据采集)到Tableau(数据可视化)对RJ Metrics(数据分析)。
工作的技术性(和良好的候选人的短缺),意味着数据科学家们会赚大钱。根据Glassdoor,数据科学家是目前在美国第十五大高薪的工作,平均91,000美元/年和在硅谷110,000美元/年。
数据/业务分析师
像其他的数据科学家一样,数据分析人员在收集、组织和解释统计信息时执行不同的任务。他们主要负责用数据去识别效率,问题区域以及可能的改进。
把它想象为”数据科学”。虽然他们可能没有用数学印章发明新的算法,但是他们有一个很强的如何使用现有的工具来解决问题的认识。他们需要对五个核心竞争力有个基本了解:编程,统计,机器学习,数据修改,数据的可视化。
有人制作图片和报告,以及进行初步研究(如调查)。这部分的工作意味着沟通技巧必不可少的。他们需要把复杂的思想用一种方法让不懂技术的人也能够理解。
业务分析师和数据分析师之间的界限变得如此模糊以至于他们基本上是相同的事情。两者都使用他们的报告和分析去帮助管理者们决策和设定目标。
虽然他们拥有一些技术技能,但是你的传统数据分析师,在技术上是远低于平均数据科学技术。不使用R和Python,他们经营Microsoft Excel, 访问Microsoft, SharePoint和SQL数据库。
因为技能简单,所以会有一个比较低的工资。平均数据分析师的收入约为54,000美元/年。数据分析师来自各种不同的背景,可以包括技术、信息管理、关系数据库的设计和开发、商业智能、数据挖掘或统计等。
数据工程师
从数据分析员的另一边——技术频谱,你会发现数据工程师。
通常来说的软件工程师,数据工程师是数据基础设施的设计者,建设者和管理者。他们负责编制和安装数据库系统,编写复杂的查询,扩展到多台机器,并将灾难恢复系统投入到位。他们还要确保这些系统顺利进行。
数据工程师的核心工作是确保数据流从源到目的地能够顺利进行,并且可以对数据进行处理和分析。这样做,他们需要了解复杂的基于Hadoop的技术(MapReduce,Hive,Pig),SQL技术(PostgreSQL和MySQL),NoSQL技术(卡桑德拉和MongoDB)和数据仓库解决方案。此外,他们还应该熟悉各种编码如Python语言,C/C++,Java,perl,R和更多。
数据工程师可能主要在幕后工作,但是他们是你数据业务生态系统的重要组成部分。因此,他们得到的报酬相当不错,平均每年91,000美元。
收集、储存、分析和展示数据需要一个团队的人。没有任何一个数据工作比其他工作更重要。每个角色都有一个独特的和重要的部分,以确保管理层拥有他们所需要的所有信息。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20