更多考试介绍及备考福利请点击:CDA 认证考试中心官网
但对于很多考生来说,没有备考经验,不知道应该如何备考?今天,我来指导大家应该如何备考,让大家充分准备,拿下CDA考试。在CDA考试大纲中为新考生讲解备考经验一下。
如何进行有效的、有针对性的备考?
——LEVEL 1 业务数据分析师
LEVEL 1 学习内容涉及描述性统计、推断性统计、SQL数据库基础、数据采集以及数据建模分析等多方面的知识和技能,其知识系统且理论性强,所以学习时不要死记硬背,而要讲求学习技巧。
CDA认证考试 Level Ⅰ 的难点分析
SQL和统计学的部分相对是比较简单的,多加练习即可掌握。
比较难的是多元统计的,如果不是统计学专业系统学习过的话理解起来还是比较吃力的。主成分分析、因子分析、聚类分析、分类分析、逻辑回归的概念理解起来都非常困难,就更谈不上应用了,实际上这些也是掌握起来比较困难的部分。建议多通过视频进行学习,重复观看,通过老师的讲解逐渐建立起多元统计的思维和逻辑,吃透理解知识点,达到可应用的层面。考试遇到同类型的问题,也不慌。
对备考者们的建议
首先要有充分的时间备考。临时抱佛脚也许可以侥幸通过考试,但对于自己掌握知识没有太大的帮助,毕竟考试是为了学习,不可本末倒置。
其次要有坚持不懈的精神。简单的知识不可大意,学到通透为止,复杂的地方不畏惧,死磕到底,要树立起终身学习的信念。考试通过并不意味着结束,而仅仅意味着开始。
第三要有提高效率的方法。对于初学者来说,你能遇到的绝大多数问题都有大神帮你解决,并且写成了博客,可以到CSDN上去搜一搜,相信你会有很大的收获。
——LEVEL 2 建模分析师方向
考试涉及数据挖掘基础理论、数据预处理、预测型数据挖掘模型、描述型数据挖掘模型四大部分。
CDA认证考试 Level Ⅱ 建模分析师的难点分析
客观题中会有些迷惑性的选项或字样,如果不加辨别很容易出错;还有些之前未了解过的算法,很难在较短时间内有深刻记忆;案例操作题中缺失值,需要使用合适的值填充缺失值。算法细节不好理解,需要从多个角度反复思考。遇到有较大的问题,比如如何选择合适的算法。在算法选择后,如何调整最优参数来提升模型预测或分类的准确度。如有一起备考可以讨论的伙伴,会大大减少这方面的困扰。
CDA2建模相比CDA1来说更偏重于实战多一些,所以对我这种实战大于理论的人来说更适应一些。印象比较深刻的是在做第二套模拟题时碰到一道计算贝叶斯的题目,算出来的答案和标准答案不一致,群里讨论了很久,最后还是依靠CDA老师给出了解题思路。所以群内讨论是一个很好的学习方法,只有沟通交流才能迅速进步。
对备考者们的建议
大纲中的内容要全部掌握,参考书尽量看。复习到位的话,理论题分数差距不大,重点在实操题,多动手,多尝试。考试涉及到的内容多,范围广,在准备的时候要抓重点;另外案例操作题先要理解数据,理解数据背后的业务逻辑,不要直接就训练模型。
——LEVEL 2 大数据分析师方向
最后,我们来聊一聊LEVEL 2 大数据分析师。
CDA认证考试 Level Ⅱ 大数据分析师的难点分析
1)Hadoop和Spark运行机制不易理解,有条件的应去图书馆寻找相关书籍,多看多思考多记忆,阅读源码和断点调试有助于理解。
2)SparkMLlib机器学习部分内容较多,也是实操的重点内容,应结合实例加深对各个算法的理解。
对备考者们的建议
1)由于大数据生态涉及架构较多,没有基础的同学应以Spark学习为主,有基础的同学应以Spark与各生态结合应用为主,通过考试系统的学习或复习相关知识点,同时Scala的学习有助于阅读Spark源码,加深对Spark原理及应用的理解。
2)考纲解析内容有限,要对照考纲动手整理笔记。
3) 学习的目的是应用,不只是考试,每一章节都应寻找相关练习,动手操作,做到每一部分代码至少码三遍。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
备考福利
好了以上就是四门职业资格认证的备考介绍,接下来给大家重磅推出考试学习资源:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31