算法回顾
图片来源:https://medium.com/machine-learning-101/chapter-1-supervised-learning-and-naive-bayes-classification-part-1-theory-8b9e361897d5
贝叶斯分类算法属于有监督机器学习(Supervised Learning)。贝叶斯分类器是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。其中朴素贝叶斯分分类是贝叶斯分类中最简单的,也是最常见的一种分类方法。
朴素贝叶斯分类算法的核心如下公式:
P(A):它是先验该率(Prior Probability),是A发生的概率。
P(B): 是边际可能性(Marginal Likelihood):是B发生的概率。
P(B|A):是可能性(likelihood),基于给定的A,B发生的概率,即已知A发生,B发生的概率。
P(A|B):是后验概率(Posterior Probability):基于给定的B,A发生的概率,即已知B发生,A发生的概率。
换个表达式可能理解的就会更加透彻:
以下是从Udemy上借鉴的一个例子:
假设有两个特征,分别为工资(Salary)和年龄(Age),已知有两种分类分别为:步行(Walks)和自驾(Drives),如上图所示。
当有一个新数据点进来时(如灰色点),基于给定它的特征工资和年龄,应该把它分为哪类?
其中,$P(Walks) = {10} \over {30}$,$P(Drives)={20} \over {30}$。
首先计算P(Walks|X)的概率,可以参见如下公式:
首先,需要自定义一个参考集,如下图中虚线所示。
计算$P(Walks|X)$后计算$P(Drivers|X)$,通过比较两个概率的大小,来决定灰色点属于哪类(Walks 或者 Drives)。通过比较不难得出灰色点属于“步行上班”类别(此处省略计算过程)。
在机器学习中,朴素贝叶斯分类器是基于贝叶斯理论(该理论中有很强的特征间独立性假设)的一个简单“概率分类”的家族。因此,朴素贝叶斯分类算法属于概率的机器学习(probabilistic machine learning),并且可应用于很多分类的任务中。典型的应用有垃圾邮件筛选(filtering spam),分类文件(classifying documents),情绪预测(sentiment prediction)。
在scikit-learn中,一共提供三种朴素贝叶斯的方法,分别为高斯朴素贝叶斯(Gaussian Naive Bayes)、二项式朴素贝叶斯(Multinomial Naive Bayes),伯努利朴素贝叶斯(Bernoulli Naive Bayes)和补足朴素贝叶斯(Complement Naive Bayes)。官方文档中给出以高斯朴素贝叶斯为例的代码,示例如下:
>>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> from sklearn.naive_bayes import GaussianNB >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) >>> gnb = GaussianNB() >>> y_pred = gnb.fit(X_train, y_train).predict(X_test) >>> print("Number of mislabeled points out of a total %d points : %d" ... % (X_test.shape[0], (y_test != y_pred).sum())) Number of mislabeled points out of a total 75 points : 4
分类概率在一些机器模型中应用广泛,在scikit-learn中,大多数机器学习算法通过使用predict_proba函数,允许计算样本各类别的概率。这个功能对于一些情况下是极为有效的,例如,如果某一类的模型预测概率是大于欧90%的。但是,包括朴素贝叶斯等模型,它的模型预测概率与现实中的概率不尽相同。例如,函数predict_proba预测某个样本属于某类的样本概率是70%,而实际只有0.1或者0.99。尤其对于朴素贝叶斯模型而言,尽管不同目标类的预测概率有效(valid),但原始概率往往采用接仅0和1的极端值。
为了得到有意义的预测概率,需要采用模型“校正”(calibration)。在scikit-learn中,使用CalibratedClassifierCV分类,通过k折交叉验证(k-fold cross-validation)来生成“好的”校正的预测概率。在CalibratedClassifierCV中,训练集用于训练模型,测试集用于矫正模型预测概率。返回的预测概率是k-fold的均值。详见参考 文章。
代码示例如下:
# 导入相关的库 from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.calibration import CalibratedClassifierCV # 载入莺尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 构建朴素贝叶斯分类对象 clf = GaussianNB() # 构建校正器 clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') # 构建带有校正概率的分类器 clf_sigmoid.fit(X, y) # 构建新样本 new_observation = [[ 2.6, 2.6, 2.6, 0.4]] # 得到矫正后的概率 clf_sigmoid.predict_proba(new_observation)
根据Alexandru和Rich在2005年发表的题为“Predicting Good Probabilities With Supervised Learning”论文[1]中指出:对于朴素贝叶斯模型而言,对于不同校正集合的大小,Isotonic Regression的表现都优于Platt Scaling方法(在CalibratedClassifierCV中,用参数method定义)。因此,这对朴素贝叶斯模型的参数设置,可以优先考虑Isotonic Regression方法。
参考文章:
[1] Niculescu-Mizil, A., & Caruana, R. (2005, August). Predicting good probabilities with supervised learning. In Proceedings of the 22nd international conference on Machine learning (pp. 625-632).
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10