算法回顾
图片来源:https://medium.com/machine-learning-101/chapter-1-supervised-learning-and-naive-bayes-classification-part-1-theory-8b9e361897d5
贝叶斯分类算法属于有监督机器学习(Supervised Learning)。贝叶斯分类器是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。其中朴素贝叶斯分分类是贝叶斯分类中最简单的,也是最常见的一种分类方法。
朴素贝叶斯分类算法的核心如下公式:
P(A):它是先验该率(Prior Probability),是A发生的概率。
P(B): 是边际可能性(Marginal Likelihood):是B发生的概率。
P(B|A):是可能性(likelihood),基于给定的A,B发生的概率,即已知A发生,B发生的概率。
P(A|B):是后验概率(Posterior Probability):基于给定的B,A发生的概率,即已知B发生,A发生的概率。
换个表达式可能理解的就会更加透彻:
以下是从Udemy上借鉴的一个例子:
假设有两个特征,分别为工资(Salary)和年龄(Age),已知有两种分类分别为:步行(Walks)和自驾(Drives),如上图所示。
当有一个新数据点进来时(如灰色点),基于给定它的特征工资和年龄,应该把它分为哪类?
其中,$P(Walks) = {10} \over {30}$,$P(Drives)={20} \over {30}$。
首先计算P(Walks|X)的概率,可以参见如下公式:
首先,需要自定义一个参考集,如下图中虚线所示。
计算$P(Walks|X)$后计算$P(Drivers|X)$,通过比较两个概率的大小,来决定灰色点属于哪类(Walks 或者 Drives)。通过比较不难得出灰色点属于“步行上班”类别(此处省略计算过程)。
在机器学习中,朴素贝叶斯分类器是基于贝叶斯理论(该理论中有很强的特征间独立性假设)的一个简单“概率分类”的家族。因此,朴素贝叶斯分类算法属于概率的机器学习(probabilistic machine learning),并且可应用于很多分类的任务中。典型的应用有垃圾邮件筛选(filtering spam),分类文件(classifying documents),情绪预测(sentiment prediction)。
在scikit-learn中,一共提供三种朴素贝叶斯的方法,分别为高斯朴素贝叶斯(Gaussian Naive Bayes)、二项式朴素贝叶斯(Multinomial Naive Bayes),伯努利朴素贝叶斯(Bernoulli Naive Bayes)和补足朴素贝叶斯(Complement Naive Bayes)。官方文档中给出以高斯朴素贝叶斯为例的代码,示例如下:
>>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> from sklearn.naive_bayes import GaussianNB >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) >>> gnb = GaussianNB() >>> y_pred = gnb.fit(X_train, y_train).predict(X_test) >>> print("Number of mislabeled points out of a total %d points : %d" ... % (X_test.shape[0], (y_test != y_pred).sum())) Number of mislabeled points out of a total 75 points : 4
分类概率在一些机器模型中应用广泛,在scikit-learn中,大多数机器学习算法通过使用predict_proba函数,允许计算样本各类别的概率。这个功能对于一些情况下是极为有效的,例如,如果某一类的模型预测概率是大于欧90%的。但是,包括朴素贝叶斯等模型,它的模型预测概率与现实中的概率不尽相同。例如,函数predict_proba预测某个样本属于某类的样本概率是70%,而实际只有0.1或者0.99。尤其对于朴素贝叶斯模型而言,尽管不同目标类的预测概率有效(valid),但原始概率往往采用接仅0和1的极端值。
为了得到有意义的预测概率,需要采用模型“校正”(calibration)。在scikit-learn中,使用CalibratedClassifierCV分类,通过k折交叉验证(k-fold cross-validation)来生成“好的”校正的预测概率。在CalibratedClassifierCV中,训练集用于训练模型,测试集用于矫正模型预测概率。返回的预测概率是k-fold的均值。详见参考 文章。
代码示例如下:
# 导入相关的库 from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.calibration import CalibratedClassifierCV # 载入莺尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 构建朴素贝叶斯分类对象 clf = GaussianNB() # 构建校正器 clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') # 构建带有校正概率的分类器 clf_sigmoid.fit(X, y) # 构建新样本 new_observation = [[ 2.6, 2.6, 2.6, 0.4]] # 得到矫正后的概率 clf_sigmoid.predict_proba(new_observation)
根据Alexandru和Rich在2005年发表的题为“Predicting Good Probabilities With Supervised Learning”论文[1]中指出:对于朴素贝叶斯模型而言,对于不同校正集合的大小,Isotonic Regression的表现都优于Platt Scaling方法(在CalibratedClassifierCV中,用参数method定义)。因此,这对朴素贝叶斯模型的参数设置,可以优先考虑Isotonic Regression方法。
参考文章:
[1] Niculescu-Mizil, A., & Caruana, R. (2005, August). Predicting good probabilities with supervised learning. In Proceedings of the 22nd international conference on Machine learning (pp. 625-632).
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16