前面我们了解了决策树的概念,现在来了解一下决策树剪枝。可能会有人问:为什么要剪枝?答案是:如果一棵决策树完全生长,那么这棵决策树所对应的每一个叶节点中只会包含一个样本,就很有可能面临过拟合问题,因此就需要我们对这棵决策树进行剪枝,以此来提高此决策树模型的泛化能力。
一般情况下,可以使用以下两类方法对决策树进行剪枝,缩小决策树的规模:
一、预剪枝:
预剪枝的核心思想是在树中节点进行扩展之前,先计算当前的划分是否能提升模型泛化能力,如果不能,则不再继续生长子树。此时可能出现不同类别的样本同时存于节点中的情况,可以通过使用多数投票的原则对该节点所属类别进行判断。关于预剪枝何时停止决策树的生长,可以采用以下几种方法:
(1) 当树达到一定深度的时候,停止树的生长;
(2) 当到达当前节点的样本数量比某个阈值小的时候,停止树的生长;
(3) 计算决策树的每一次分裂能否提升测试集的准确度,当提升程度小于某个阈值的时候,不再继续生树的长。
预剪枝具有思想直接、算法简单、效率高等一系列特点,适合解决大规模数据的问题。但是,对于上述阈值,需要一定的经验来进行判断。另外,预剪枝存在欠拟合风险。这是因为,虽然当前的划分会导致测试集准确率降低或提升不高,但在之后的划分中,准确率会有显著提升也不无可能。
二、后剪枝:
后剪枝的核心思想是先让算法生成一颗完全生长的决策树,然后自底层向上计算是否进行剪枝操作。后剪枝也需要通过在测试集上的准确率来进行判断,如果剪枝之后,能够提升准确率,则进行剪枝。
具体操作:
1.如果存在任一子集是一棵树,则在该子集递归剪枝过程
2.计算不合并的误差
3.如果合并会降低误差的话,就将叶节点合并
在回归树一般用总方差计算误差(即用叶子节点的值减去所有叶子节点的均值)。
相比于预剪枝,后剪枝的泛化能力更强,但是计算开销会更大。
后剪枝方法: 错误率降低剪枝(Reduced Error Pruning,REP)、悲观剪枝(Pessimistic Error Pruning,PEP)、代价复杂度剪枝(Cost Complexity Pruning,CCP)、最小误差剪枝(Minimum Error Pruning,MEP)、CVP(Critical Value Pruning)、OPP(Optimal Pruning)等。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21