Keras 是基于 Theano 或 者TensorFlow 的一个深度学习框架,其设计源于Torch,编程语言用 Python ,是一个功能强大、内容抽象,高度模块化的神经网络库,能够支持 GPU 和 CPU。目前tensorflow已经将keras合并到了自己的主代码中,我们可以直接tf.keras就能调用其中的工具库了。
一、 Keras设计原则
a)用户友好:Keras提供一致而简洁的API, 大大降低了一般应用下用户的工作量,并且,Keras可以提供清晰和具有实践意义的bug反馈。
b)模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。
c)易扩展性:只要仿照现有模块编写出新的类或者函数,就能够非常简单的添加新模块。这种快捷性、便利性,能够让Keras在先进的研究工作方面有更突出的表现。
d)与Python协作:Keras并没有单独的模型配置文件类型,模型使用python代码,这使得Keras更紧凑和更易debug,扩展更为便捷。
二、keras安装
在进行keras安装之前,需要需要确保TensorFlow,Theano,CNTK已经安装完成。建议使用TensorFlow后端。如果计划在GPU上运行keras,还可以选择依赖项cuDNN。
1、打开dos窗口,在命令行中输入:pip install keras
2、下载完成后,进入python环境,输入import keras,输出Using Tensorflow backend即表示安装成功。
三、快速上手 Keras
模型,是一种组织网络层的方式,它是Keras 的核心数据结构。Keras 中主要的模型有: Sequential 模型,Sequential 是一系列网络层按顺序构成的栈。
Sequential 模型如下:
from keras.models import Sequential model = Sequential()
将一些网络层通过 .add() 堆叠起来,就构成了一个模型:
from keras.layers import Dense, Activation model.add(Dense(units=64. input_dim=100)) model.add(Activation("relu")) model.add(Dense(units=10)) model.add(Activation("softmax"))
完成模型的搭建后,我们需要使用 .compile() 方法来编译模型:
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
模型编译时必须指明损失函数和优化器。Keras 的核心理念就是简便快捷,操作容易。用户可以根据自己的实际需要定制自己的模型、网络层,甚至修改源代码。比如,我们使用自定义的 SGD 优化器:
from keras.optimizers import SGD model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01. momentum=0.9. nesterov=True))
模型编译完成之后,我们在训练数据上按 batch 进行一定次数的迭代来训练网络:
model.fit(x_train, y_train, epochs=5. batch_size=32)
如果我们采用手动方法,将一个个 batch 的数据送入网络中训练,需要使用:
model.train_on_batch(x_batch, y_batch)
随后,我们可以用这一行代码来评估模型,确定模型的指标是否能够满足我们的要求:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
或者,我们可以使用此模型,预测新数据:
classes = model.predict(x_test, batch_size=128)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31