我们都知道pandas 是一款功能强大的python库,基于Numpy,支持高性能的矩阵运算,通常在数据挖掘和数据分析领域应用较多,但是pandas 数据清洗功能也不能忽视,今天小编就为大家分享pandas是如何检测和处理缺失数据的。
一、缺失值是什么?
缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。通常按照数据缺失机制,可分为以下几种:
1.可忽略的缺失
(1)完全随机缺失 MCAR全称:missing completely at random,顾名思义,指的是数据的缺失是随机的,与已观察到的和未观察到的数据无关
(2)随机缺失MAR,全称:missing at random,该类数据的缺失依赖于其他完全变量
2.不可忽略的缺失NIM(全称:non-ignorable missing ) 或者非随机缺失,这种数据的缺失既依赖于完全变量又依赖于不完全变量本身
二、判断是否有缺失值
1.创建数据
import pandas as pd
import numpy as np
data = pd.DataFrame({'a': [1. 2. 4. np.nan,7. 9], 'b': ['a', 'b', np.nan, np.nan, 'd', 'e'], 'c': [np.nan, 0. 4. np.nan, np.nan, 5], 'd': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]})
a b c d
0 1.0 a NaN NaN
1 2.0 b 0.0 NaN
2 4.0 NaN 4.0 NaN
3 NaN NaN NaN NaN
4 7.0 d NaN NaN
5 9.0 e 5.0 NaN
2.判断是否有缺失值及统计
print(data.isnull().any())
a True
b True
c True
d True
print(data.isnull().sum()) #t统计每一列的缺失值个数
a 1
b 2
c 3
d 6
1.删除;
pandas缺失值处理最原始的方法,pandas删除缺失值,通常通过dropna的方法,使用dropna的前提是,缺失值的类型必须是np.nan
删除缺失值为np.nan的所在行
movie.dropna()
参数说明:
axis 参数用于控制行或列,跟其他不一样的是,axis=0 (默认)表示操作行,axis=1 表示操作列。
how 参数可选的值为 any(默认) 或者 all。any 表示一行/列有任意元素为空时即丢弃,all 一行/列所有值都为空时才丢弃。
subset 参数表示删除时只考虑的索引或列名。
thresh参数的类型为整数,它的作用是,比如 thresh=3.会在一行/列中至少有 3 个非空值时将其保留。
2.填充。
最常见的是使用 fillna 完成填充。
data.fillna(0)
除了可以使用标量来填充之外,还可以使用前一个或后一个有效值来填充。
设置参数 method=‘pad’ 或 method=‘ffill’ 可以使用前一个有效值来填充。
设置参数 method=‘bfill’ 或 method=‘backfill’ 可以使用后一个有效值来填充。
3.替换。
有时候,某些异常值也会被当做缺失值来处理,可以使用 replace 方法来替换缺失值。
比如: user_info.replace({“age”: 40. “birth”: pd.Timestamp(“1978-08-08”)}, np.nan) #将年龄40替换 日期为1978-08-08也替换
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20