协同过滤推荐算法是诞生时间最早,而且应用广泛的,著名的推荐算法。其最主要的功能进行是预测和推荐。协同过滤推荐算法可以通过对用户历史行为数据的挖掘,从而发现用户的偏好,并且基于不同的偏好,将用户划分为不同的群组,并推荐品味相似的商品。基于用户的协同过滤算法user-based collaboratIve filtering,是协同过滤推荐算法的极为重要的一个分类,今天小编主要给大家分享基于用户的协同过滤算法的原理和实现。
一、基于用户的协同过滤算法概念
基于用户(user-based)的协同过滤算法是通过,挖掘用户的历史行为数据,发现用户对商品或内容的偏好,并对这些偏好进行度量和打分。之后根据不同用户对相同商品或内容的态度以及偏好程度,来计算用户之间的相似度关系。基于用户的协同过滤,主要计算的是用户与用户之间的相似度,只需要找出相似用户喜欢的物品,并预测出目标用户对对应物品的评分,就能够找到评分最高的物品推荐给用户,这样能够挖掘用户的隐藏属性。
二、基于用户的协同过滤算法原理
基于用户的协同过滤算法主要包括以下两个步骤:
(1) 找到与目标用户兴趣相似的用户集合。
(2) 找到此集合中的用户感兴趣的,并且目标用户没有接触过的的物品推荐给目标用户。
基于用户User-CF算法的假设是目标用户和其他用户的兴趣、偏好相似,那么他们喜欢的东西都应该也相似,就是常说的人以群分。
基于用户的协同过滤算法适用于用户较少、用户个性化兴趣不太显著的情况,这样,在推荐过程中用户新的行为不一定会导致推荐结果的变化,但是如果用户过多,那么计算用户相似矩阵的代价就会太大。并且这一算法不能解决新用户进来的冷启动问题,新物品进来却可以较快地进行推荐。
三、算法实现
1.计算用户相似度
user-item: movieId 1 2 3 4 5 6 7 8 userId 1 3.5 2.0 NaN 4.5 5.0 1.5 2.5 2.0 2 2.0 3.5 4.0 NaN 2.0 3.5 NaN 3.0 3 5.0 1.0 1.0 3.0 5.0 1.0 NaN NaN 4 3.0 4.0 4.5 NaN 3.0 4.5 4.0 2.0 5 NaN 4.0 1.0 4.0 NaN NaN 4.0 1.0 6 NaN 4.5 4.0 5.0 5.0 4.5 4.0 4.0 7 5.0 2.0 NaN 3.0 5.0 4.0 5.0 NaN 8 3.0 NaN NaN 5.0 4.0 2.5 3.0 4.0 # 构建共同的评分向量 def build_xy(user_id1, user_id2): bool_array = df.loc[user_id1].notnull() & df.loc[user_id2].notnull() return df.loc[user_id1, bool_array], df.loc[user_id2, bool_array] #如此用户评分矩阵中用户1,和用户2的共同评分向量是 movieId 1 3.5 2 2.0 5 5.0 6 1.5 8 2.0 Name: 1, dtype: float64, movieId 1 2.0 2 3.5 5 2.0 6 3.5 8 3.0 Name: 2, dtype: float64) # 皮尔逊相关系数 def pearson(user_id1, user_id2): x, y = build_xy(user_id1, user_id2) mean1, mean2 = x.mean(), y.mean() # 分母 denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5 try: value = sum((x - mean1) * (y - mean2)) / denominator except ZeroDivisionError: value = 0 return value
2.找到相似度最高的用户并进行推荐:
# 计算最相似的邻居 def computeNearestNeighbor(user_id, k=3): return df.drop(user_id).index.to_series().apply(pearson, args=(user_id,)).nlargest(k) #与用户3相似的前3个用户 userId 1 0.819782 6 0.801784 7 0.766965 Name: userId, dtype: float64 #推荐 def recommend(user_id): # 找到最相似的用户id nearest_user_id = computeNearestNeighbor(user_id).index[0] print('最相似用户ID:') print nearest_user_id # 找出邻居评价过、但自己未曾评价的项目 # 结果:index是项目名称,values是评分 return df.loc[nearest_user_id, df.loc[user_id].isnull() & df.loc[nearest_user_id].notnull()].sort_values() #对用户3进行推荐结果 最相似用户ID: 1 movieId 8 2.0 7 2.5 Name: 1, dtype: float64
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21