大数据处理时我们经常会遇到数据倾斜的问题,尤其是在数据量过大时,数据倾斜可能会导致各种各样的问题。Hadoop数据倾斜主要表现为:ruduce阶段卡在99.99%,而且是一直99.99%不能结束。
具体来说就是:mapreduce程序执行时,reduce节点大部分已经执行完毕,但是其中会有一个或者几个reduce节点运行速度很慢,从而使得整个程序的处理时间很长。原因是:某一个key的条数比其他key多出太多,因此这条key所在的reduce节点所处理的数据量就比其他节点就大很多,这也就造成了某几个节点迟迟运行不完。由于Hive是分阶段执行的,map处理数据量的差异,取决于上一个stage的reduce输出,因此将数据均匀的分配到各个reduce中,这一点是解决数据倾斜的关键。
1.Hadoop框架的特性
B、Jobs 数多的作业运行效率会相对比较低
C、countdistinct、group by、join等操作,触发了Shuffle动作,导致全部相同key的值聚集在一个或几个节点上,很容易发生单点问题。
2.具体原因
A:key 分布不均匀,某一个key的条数比其他key多太多
B:业务数据自带的特性
C:建表时考虑不全面
D:可能某些 HQL 语句自身就存在数据倾斜 问题
1、从业务和数据方面解决数据倾斜
(1)有损的方法:找到异常数据。
(2)无损的方法:
对分布不均匀的数据,进行单独计算
首先对key做一层hash,把数据打散,让它的并行度变大,之后进行汇集
(3)数据预处理
2、Hadoop平台的解决方法
(1)针对join产生的数据倾斜
A.大表和小表join产生的数据倾斜
a.在多表关联情况下,将小表(关联键记录少的表)依次放到前面,这样能够触发reduce端减少操作次数,从而减少运行时间。
b.同时使用Map Join让小表缓存到内存。在map端完成join过程,这样就能省掉redcue端的工作。需要注意:这一功能使用时,需要开启map-side join的设置属性:set hive.auto.convert.join=true(默认是false)
还可以对使用这个优化的小表的大小进行设置:set hive.mapjoin.smalltable.filesize=25000000(默认值25M)
B.大表和大表的join产生的数据倾斜
a.j将异常值赋一个随机值,以此来分散key,均匀分配给多个reduce去执行
b.如果key值都是有效值的情况下,需要设置以下几个参数来解决
set hive.exec.reducers.bytes.per.reducer = 1000000000
也就是每个节点的reduce,其 默认是处理数据地大小为1G,如果join 操作也产生了数据倾斜,那么就在hive 中设定
set hive.optimize.skewjoin = true;
set hive.skewjoin.key = skew_key_threshold (default = 100000)
(2)group by 造成的数据倾斜
解决方式相对简单:
hive.map.aggr=true (默认true) 这个配置项代表是否在map端进行聚合,相当于Combiner
hive.groupby.skewindata
(3)count(distinct)或者其他参数不当造成的数据倾斜
A.reduce个数太少
set mapred.reduce.tasks=800
B.HiveQL中包含count(distinct)时
使用sum...group byl来替代。例如select a,sum(1) from (select a, b from t group by a,b) group by a;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30