python之所以这么火,是因为python有许多功能强大的库,能帮助我们完成数据采集、数据挖掘、数据清洗、数据可视化等一系列操作。许多python库安装之后,为了保证使用效果,需要进行更新升级,由于安装的python库比较多,一个一个更起来比较费时、费力,今天小编为大家带来了可以批量更新python库的方法,希望对大家有所帮助。
文章来源: Python猫
作者:豌豆花下猫
众所周知,升级某个库(假设为 xxx),可以用pip install --upgrade xxx 命令,或者简写成pip install -U xxx 。
如果有多个库,可以依次写在 xxx 后面,以空格间隔。那么,如何简单优雅地批量更新系统中全部已安装的库呢?
接下来我们直奔主题,带大家学习几种方法/骚操作吧!
pip list 命令可以查询已安装的库,结合 Linux 的一些命令(cut、sed、awk、grep……),可以直接在命令行中实现批量升级。
先查询一下,看看是什么格式的:
可以看到,前两行是一些提示信息,我们需要从第 3 行开始过滤,那就可以使用awk命令:
python3 -m pip list | awk 'NR>=3{print}' | awk '{print $1}' | xargs python3 -m pip install -U
解释一下这句命令的操作过程:先 list 查询,接着第一个 awk 取出行号大于等于 3 的内容,第二个 awk 取出第一列的内容,然后作为参数传给最后的升级命令。
(PS:测试服务器上有不同版本的 Python,所以作了指定。关于“-m”的用法,推荐阅读:Python 中 -m 的典型用法、原理解析与发展演变)
pip 还支持查询已过期的库,即使用pip list --outdated 命令。默认情况下,查询出的格式跟pip list 相似,有效内容从第三行开始,大家可以试试。
另外,我们还可以指定--format=freeze 格式,效果是这样的:
这样的格式,可以用 cut 命令切割“=”号,然后取第一列:
pip list --outdated --format=freeze | cut -d = -f 1 | xargs pip install -U
以上命令在 Windows 系统中用不了。有没有更为通用的方法呢?
如果是全量升级已安装的库,可以先用pip freeze 命令生成依赖文件,获取到已安装的库及其当前版本号:
pip freeze > requirements.txt
然后修改文件中的“==”为“>=”,接着执行:
pip install -r requirements.txt --upgrade
此方法比较适合于带有依赖文件的具体项目,可以针对该项目来升级所需的库。
早期的 pip 库(<10.0.1)提供了 get_installed_distributions() 方法查询已安装的库,可以在代码中使用:
# 只在早期 pip 版本中用 import pip from subprocess import call packages = [dist.project_name for dist in pip.get_installed_distributions()] call("pip install --upgrade " + ' '.join(packages), shell=True)
在较新版本中,此方法已被废弃,同样的功能要这样写:
# 较新的 pip 版本。但不建议使用 from subprocess import call from pip._internal.utils.misc import get_installed_distributions for dist in get_installed_distributions(): call("pip install --upgrade " + dist.project_name, shell=True)
但是,“_internal”带前缀下划线,表明它并不希望被导出使用。
跟方法二和三相似的还有一种方法。
pkg_resources 是 setuptools 库的一部分,用于查找和管理 Python 库、版本依赖关系、相关联的资源文件等。可以这样写:
# 需要安装 setuptools import pkg_resources from subprocess import call packages = [dist.project_name for dist in pkg_resources.working_set] call("pip install --upgrade " + ' '.join(packages), shell=True)
pip-review 库是一个专门用来方便升级 Python 库的工具,可以查看已过期的库、自动升级或者交互式选择性地升级:
还有一个类似的pip-upgrader 库,也是为了解决批量升级的问题,感兴趣的同学请自行搜索。
pip 官方有计划要提供一个全量升级的(upgrade-all)命令,如果开发出来了,那应该会是最佳选择。
然后,坏消息是这个计划被阻塞了近三年,目前 issue 仍处于 Open 状态,不知道何时能有进展。这里暂且一提吧,未来留意。
前面介绍了六种方法,各有其适用的场景,小伙伴们都学会了么?
除此之外,当然还有其它的方法,比如 stackoverflow 网站上有个“How to upgrade all Python packages with pip?”问题,其下就有比较多的回答。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21