前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。
一、首先来回顾一下什么是泛化能力
泛化能力(generalization ability),百科给出的定义是:机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。简单来概括一下,泛化能力就是一个机器学习算法能够识别没有见过的样本的能力,通俗点说就是学以致用,举一反三的能力。机器学习方法训练出一个模型,我们会希望这个模型不但是对于已知的数据(训练集)性能表现良好,而且对于未知的数据(测试集)也能够表现良好,这就表明这个模型具有良好的泛化能力。在实际应用子中,模型的过拟合(overfitting)与欠拟合(underfitting)能够最直观的体现出泛化能力的好坏。
根据泛化能力强弱,可以分为:
欠拟合:模型不能在训练集上获得足够低的误差;
拟合:测试误差与训练误差差距较小;
过拟合:训练误差和测试误差之间的差距太大;
不收敛:模型不是根据训练集训练得到的。
二、简单介绍正则化
正则化regularization的目标为:模型的经验风险和模型复杂度之和达到最小,即结构风险达到最小。也就是正则化的目的是为了防止过拟合, 从而增强泛化能力。
我们通常将正则化定义为:对学习算法的修改,目的是减少泛化误差而不是训练误差
在训练次数足够多,以及表达形式足够复杂的情况下,训练误差能够无限小,可是这并不代表着泛化误差的减小。相反的,一般情况下,这样会导致泛化误差的增大。最常见的例子是:真实数据的分布符合二次函数,但是欠拟合一般会将模型拟合成一次函数,而过拟合通常将模型拟合成高次函数。根据奥卡姆剃须原则:在尽可能符合数据原始分布的基础上,更加平滑、简单的模型,往往更加符合数据的真实特征。所以,我们必须采用采用某种约束,这也就引出了的正则化。
三、正则化---提高模型的泛化能力
按策略正则化可以分为以下三类:
(一) 经验正则化:利用工程上的技巧,实现更低的泛化误差,例如:提前终止法、模型集成、Dropout等;
1.提前终止(earlystop)
一种最简单的正则化方法,在泛化误差指标不再提升后,提前结束训练
2.模型集成(ensemable))
通过训练多个模型来完成该任务,这些模型可以是不同的网络结构,不同的初始化方法,不同的数据集训练出来的,也可以是采用不同的测试图片处理方法。总结来说就是,利用多个模型进行投票的策略
3.Dropout移除一部分神经元
Dropout采用的是"综合起来取平均”的策略,来防止过拟合问题。不同的网络会产生不同的过拟合问题,取平均会让一些“相反的”拟合有互相抵消的可能,整个Dropout过程就相当于 对很多个不同的神经网络取平均。而且因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现,这样会减少神经元之间复杂的共适应关系
(二)参数正则化:直接提供正则化约束,例如:L1/L2正则化法等;
L1/L2正则化方法,就是最常用的正则化方法,它直接来自于传统的机器学习。
L1正则化:
L2正则化:
(三)隐式正则化:不直接提供约束,例如:数据有关的操作,包括归一化、数据增强、扰乱标签等。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16