文章来源:接地气学堂
作者:接地气的陈老师
“推动业务”是数据人最怕的词了。妈耶,还推动业务呢,我自己不被业务部门天天追着屁股要数就不错了,咋个推动法。可领导们最喜欢提这种要求。今天我们就来详细聊聊。首先要分清的是,提这个问题的人是谁,很重要。
问:以下两种情况有什么区别?
A、业务部门领导问:数据分析,如何推动业务发展?
B、数据部门领导问:数据分析,如何推动业务发展?
答:主导权不一样。业务部门问了建议,可以直接去落地。数据部门只是个辅助,说的话如果不对业务胃口,就永远悬在天上。就像开车,抓方向盘的人听了建议能换路线,做副驾驶的哔哔太多,很容易造嫌弃。所以提问人不同,应对思路是不一样的。今天我们先讲业务来提问。
1
推动业务的错误做法
很多同学一听“数据推动业务”,直观的想法就是:
这么干肯定被业务喷死
随便问几个问题:
1、谁来搞?
2、啥时候搞?
3、搞到多少?
4、花多少钱搞?
5、有这钱我搞别的不行吗?
6、用大转盘搞还是浇花种树搞?
7、浇花种树是送实物水果还是券?
8、用券搞还是积分搞还是礼品搞?
9、券派10、20、30、40、50……?
10、搞起来了但是转化率跌了行不?
一个都回答不上来。
错误在哪里?错误在把业务想简单了。即使看似简单的:“活跃率低了”真要付诸行动,也得考虑上边列出来的众多环节。并且这些环节里,有一些不是数据能直接解决的(比如签到活动的创意设计,浇花、种树、养金猪、造电器……这些靠加减乘除可算不出来)。所以想要推动业务,就得认真分类业务工作,找到数据的发力点。
2
推动业务的切入点
业务解决问题,从决定立项到执行完成,分为四大环节(如下图所示)
在整个过程中,数据分析不能包打天下。作为一种理性、量化的工具,更适合用于解决战略、战术决策工作,适合战况监控。至于战斗动作,数据只能作为参考,一个有经验的策划远远比加减乘除管用。因此合理安排输出产物,才能更好地推动业务去行动,而不是让业务患上数据依赖症:“你用人工智能大数据分析一下我这一幅画该几点红几点绿”——数据不是这么用的。
3
推动业务的顺序
清晰了输出内容,就可以规划推动顺序了。这里很多新人会犯个错误:指望一步到位,自己拼命做一个很细很细,细到可以执行的方案就算成功。这样一来直接替代了业务的工作,把自己累得半死。二来业务也不领情——“你算老几,你替我拿主意??!!”
要知道:没人能未卜先知,在一开始规划清楚所有事。推动业务的过程是循序渐进,在不断共识的基础上,从不清晰到清晰,逐步深入的。特别是一些关键节点:谁来负责,出多少预算,考核指标是什么,考核多少。这些是需要请示部门领导,甚至部门之间共识,和老板共识才能确认的。所以要沉住气,一步步来(如下图)。
4
推动业务的坑点
本篇讨论建立在“业务部门领导提问且亲自下场”的基础上,所以想做数据推动,是有强力的上层支持的。但有了尚方宝剑不见得真的敢拔出来随便砍人。在具体推动过程中,有一些新人常见坑点,必须注意:
坑点1:直接信了业务的判断。注意,业务的判断不见得都是基于数据,甚至不见得都是事实。很常见的,比如:
是滴,各种情绪、立场、单个事件,都会干扰到人们的判断。所以业务跟你说:我们活跃率不行;我们的转化还得加强;我们的用户体验不好的时候,一定要追溯的问题源头,落实到一个数字或者一件事上,具体讨论到底是啥问题。
坑点2:没有相关指标分析。很多非利润、成本类指标,都容易产生虚荣效应:
1、容易被刷高:大转盘一摇,活跃率铁高!
2、无实际产出:活跃高了又怎样,他又不买
3、无长期效果:短期刺激完又怎样?不做活动又跌
所以当业务关注这些指标的时候,一定要做相关的指标分析,特别是要关联到一个有最终考核意义的指标,比如利润、成本之类。至少要保证这几个主要指标是联动的,允许有虚荣成分,但是不能全是水。
坑点3:没有事前定义目标。这也是业务经常干的事:
1、我要提升活跃率——从多少提升到多少?不知道!
2、我要提升消费——从多少提升到多少?不知道!
3、我要拉动业绩——从多少拉动到多少?不知道!
4、我要激活用户——啥叫沉睡?咋算激活?不知道!
是滴,很多业务部门干活完全是凭经验,凭感觉,凭习惯。完全没思考过到底考核啥指标,又到底该做多少。一问就是不知道,要么就是说:“和自然状态下对比下?”问题是很多业务根本就是促销不断,活动不停,咋个自然状态法。所以想做数据推动,必须认认真真看数据定目标,不能含糊。
坑点4:过往策略没有收集。过往用过的策略目标,打法、效果,全部没有收集。导致需要数据支持的时候不知道看啥,最后还是凭经验决定(如下图)。
坑点5:创新方案没有标签。同上,创新方案想做测试,要有具体的标签才好后期做对比分析,不然只看一个很粗的响应结果,还是没法指导到设计的细节工作。
坑点6:测试方案不看整体。这是上一个问题的另一个极端,测试的时候太过计较细节,比如页面颜色,按钮左边右边,优惠券20、30纠结太多,导致见细节不见整提,到了用户那里:这啥破活动,不玩了。
坑点7:执行过程没做监控。急着上线,需求反反复复改,最后埋点没做好,数据没打通,结果吗,自然……
总之,数据推动业务,就像开车开导航一样。大家都觉得导航好用,可最后支撑导航功能的,却需要GPS定位,道路图,实时数据反馈,路线规划算法等等复杂系统。理论说起来容易,执行起来只能看菜下饭,且行且珍惜了。况且这还是在业务部门推动的情况下,如果是数据部门自己想推动,那就更得付一番精力。有兴趣的话,本篇集齐60在看,我们下一篇分享:数据部门如何提升数据驱动力。敬请期待哦。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20