热线电话:13121318867

登录
首页大数据时代欠拟合产生的原因有哪些?应该如何解决?
欠拟合产生的原因有哪些?应该如何解决?
2020-07-23
收藏

对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合问题,一直是模型训练中的难题,我们常常需要对这二者进行权衡,今天小编给大家整理、分享的就是欠拟合问题产生的原因以及解决办法,希望对大家有所帮助。

一、什么是欠拟合

欠拟合underfiting / high bias,就是指模型不能在训练集上获得足够低的误差,在训练集、验证集以及测试集上均表现不佳的情况。用偏差和方差来解释就是,欠拟合的时候为高偏差(偏差描述的是模型的期望输出与真实输出之间的差异)。

出现欠拟合的原因是模型尚未学习到数据的真实结构。因此欠拟合可以简单理解为:模型对训练数据的信息提取不充分,并没有学习到数据背后的规律,导致模型应用在测试集上时,无法做出正确的判断。

欠拟合,模型拟合程度不高,数据距离拟合曲线较远,不能够很好地拟合数据。

图中第一个模型欠拟合,无法学习到数据的有效特征

二、欠拟合解决办法

1、做特征工程,添加其他特征项,有时候欠拟合出现的原因是:特征项不够,没有足够的信息支持模型做判断。这时候我们可以通过添加其他特征项来解决。例如,“组合”、“泛化”、“相关性”、“上下文特征”、“平台特征”等等,都能够作为特征添加的首选项。

2、添加多项式特征,这种做法在机器学习算法里面很常用,举个例子,比如将线性模型通过添加二次项或者三次项使模型泛化能力更强。

3、减少正则化参数,正则化的目标是:防止过拟合的,现在模型是欠拟合,就需要减少正则化参数。

4、增加模型复杂度。模型如果太简单,就不能应对复杂的任务。我们可以通过使用更加复杂的模型,来减小正则化系数。比如可以使用核函数,集成学习方法(集成学习方法boosting(如GBDT)能有效解决high bias),深度学习等。

以上就是小编今天跟大家分享的一些欠拟合的相关知识,希望对大家处理和解决欠拟合问题有所帮助。其他机器学习深度学习的知识,小编也会继续整理,希望大家多多关注。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询