对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合和欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合问题,一直是模型训练中的难题,我们常常需要对这二者进行权衡,今天小编给大家整理、分享的就是欠拟合问题产生的原因以及解决办法,希望对大家有所帮助。
一、什么是欠拟合
欠拟合underfiting / high bias,就是指模型不能在训练集上获得足够低的误差,在训练集、验证集以及测试集上均表现不佳的情况。用偏差和方差来解释就是,欠拟合的时候为高偏差(偏差描述的是模型的期望输出与真实输出之间的差异)。
出现欠拟合的原因是模型尚未学习到数据的真实结构。因此欠拟合可以简单理解为:模型对训练数据的信息提取不充分,并没有学习到数据背后的规律,导致模型应用在测试集上时,无法做出正确的判断。
欠拟合,模型拟合程度不高,数据距离拟合曲线较远,不能够很好地拟合数据。
二、欠拟合解决办法
1、做特征工程,添加其他特征项,有时候欠拟合出现的原因是:特征项不够,没有足够的信息支持模型做判断。这时候我们可以通过添加其他特征项来解决。例如,“组合”、“泛化”、“相关性”、“上下文特征”、“平台特征”等等,都能够作为特征添加的首选项。
2、添加多项式特征,这种做法在机器学习算法里面很常用,举个例子,比如将线性模型通过添加二次项或者三次项使模型泛化能力更强。
3、减少正则化参数,正则化的目标是:防止过拟合的,现在模型是欠拟合,就需要减少正则化参数。
4、增加模型复杂度。模型如果太简单,就不能应对复杂的任务。我们可以通过使用更加复杂的模型,来减小正则化系数。比如可以使用核函数,集成学习方法(集成学习方法boosting(如GBDT)能有效解决high bias),深度学习等。
以上就是小编今天跟大家分享的一些欠拟合的相关知识,希望对大家处理和解决欠拟合问题有所帮助。其他机器学习和深度学习的知识,小编也会继续整理,希望大家多多关注。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20