京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面小编在介绍FP-Growth算法时,提到了Apriori算法,其实FP-Growth是基于Apriori的,今天小编就具体给大家介绍一下Apriori算法。
一、什么是Apriori算法
Apriori算法是一种最有影响的挖掘数据关联规则频繁项集的算法,能够发现事物数据库中频繁出现的数据集,通过这些联系构成的规则,能够帮助用户找出某些行为特征,从而帮助企业进行决策。
Apriori算法基于这样的事实:算法使用频繁项集性质的先验知识。Apriori使用一种称作逐层搜索的迭代方法,k-项集用于探索(k+1)-项集。首先,找出频繁1-项集的集合。该集合记作L1.L1用于找频繁2-项集的集合L2.而L2用于找L3.如此下去,直到不能找到频繁k-项集。找每个Lk需要一次数据库扫描。
算法原始数据如下:
算法的基本过程如下图:
二、Apriori算法原理
1.扫描数据集,得到所有出现过的数据,作为候选1项集。
2.挖掘频繁k项集。
3.扫描计算候选k项集的支持度。
4.剪枝去掉候选k项集中支持度低于最小支持度α的数据集,得到频繁k项集。如果频繁k项集为空,则返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。
5.基于频繁k项集,连接生成候选k+1项集。
6.利用步骤2.迭代得到k=k+1项集结果。
三、Apriori算法利弊分析
1.利:
适合于稀疏数据集。
算法原理简单,很容易实现。
适合事务数据库的关联规则挖掘。
2.弊
有可能产生庞大的候选集。
算法需多次遍历数据集,效率比较低,而且耗时。
三、算法实现
假如有项目集合I={1,2,3,4,5},有事务集T:
1,2,3 1,2,4 1,3,4 1,2,3,5 1,3,5 2,4,5 1,2,3,4
设定minsup=3/7,misconf=5/7。
*Apriori算法 2012.10.31*/ #include <iostream> #include <vector> #include <map> #include <string> #include <algorithm> #include <cmath> using namespace std; vector<string> T; //保存初始输入的事务集 double minSup,minConf; //用户设定的最小支持度和置信度 map<string,int> mp; //保存项目集中每个元素在事务集中出现的次数 vector< vector<string> > F; //存放频繁项目集 vector<string> R; //存放关联规则 void initTransactionSet() //获取事务集 { int n; cout<<"请输入事务集的个数:"<<endl; cin>>n; getchar(); cout<<"请输入事务集:"<<endl; while(n--) { string str; getline(cin,str); //输入的事务集中每个元素以空格隔开,并且只能输入数字 T.push_back(str); } cout<<"请输入最小支持度和置信度:"<<endl; //支持度和置信度为小数表示形式 cin>>minSup>>minConf; } vector<string> split(string str,char ch) { vector<string> v; int i,j; i=0; while(i<str.size()) { if(str[i]==ch) i++; else { j=i; while(j<str.size()) { if(str[j]!=ch) j++; else break; } string temp=str.substr(i,j-i); v.push_back(temp); i=j+1; } } return v; } void genarateOneFrequenceSet() //生成1-频繁项目集 { int i,j; vector<string> f; //存储1-频繁项目集 for(i=0;i<T.size();i++) { string t = T[i]; vector<string> v=split(t,' '); //将输入的事务集进行切分,如输入1 2 3,切分得到"1","2","3" for(j=0;j<v.size();j++) //统计每个元素出现的次数,注意map默认按照key的升序排序 { mp[v[j]]++; } } for(map<string,int>::iterator it=mp.begin();it!=mp.end();it++) //剔除不满足最小支持度要求的项集 { if( (*it).second >= minSup*T.size()) { f.push_back((*it).first); } } F.push_back(T); //方便用F[1]表示1-频繁项目集 if(f.size()!=0) { F.push_back(f); } } bool judgeItem(vector<string> v1,vector<string> v2) //判断v1和v2是否只有最后一项不同 { int i,j; i=0; j=0; while(i<v1.size()-1&&j<v2.size()-1) { if(v1[i]!=v2[j]) return false; i++; j++; } return true; } bool judgeSubset(vector<string> v,vector<string> f) //判断v的所有k-1子集是否在f中 { int i,j; bool flag=true; for(i=0;i<v.size();i++) { string str; for(j=0;j<v.size();j++) { if(j!=i) str+=v[j]+" "; } str=str.substr(0,str.size()-1); vector<string>::iterator it=find(f.begin(),f.end(),str); if(it==f.end()) flag=false; } return flag; } int calculateSupportCount(vector<string> v) //计算支持度计数 { int i,j; int count=0; for(i=0;i<T.size();i++) { vector<string> t=split(T[i],' '); for(j=0;j<v.size();j++) { vector<string>::iterator it=find(t.begin(),t.end(),v[j]); if(it==t.end()) break; } if(j==v.size()) count++; } return count; } bool judgeSupport(vector<string> v) //判断一个项集的支持度是否满足要求 { int count=calculateSupportCount(v); if(count >= ceil(minSup*T.size())) return true; return false; } void generateKFrequenceSet() //生成k-频繁项目集 { int k; for(k=2;k<=mp.size();k++) { if(F.size()< k) //如果Fk-1为空,则退出 break; else //根据Fk-1生成Ck候选项集 { int i,j; vector<string> c; vector<string> f=F[k-1]; for(i=0;i<f.size()-1;i++) { vector<string> v1=split(f[i],' '); for(j=i+1;j<f.size();j++) { vector<string> v2=split(f[j],' '); if(judgeItem(v1,v2)) //如果v1和v2只有最后一项不同,则进行连接 { vector<string> tempVector=v1; tempVector.push_back(v2[v2.size()-1]); sort(tempVector.begin(),tempVector.end()); //对元素排序,方便判断是否进行连接 //剪枝的过程 //判断 v1的(k-1)的子集是否都在Fk-1中以及是否满足最低支持度 if(judgeSubset(tempVector,f)&&judgeSupport(tempVector)) { int p; string tempStr; for(p=0;p<tempVector.size()-1;p++) tempStr+=tempVector[p]+" "; tempStr+=tempVector[p]; c.push_back(tempStr); } } } } if(c.size()!=0) F.push_back(c); } } } vector<string> removeItemFromSet(vector<string> v1,vector<string> v2) //从v1中剔除v2 { int i; vector<string> result=v1; for(i=0;i<v2.size();i++) { vector<string>::iterator it= find(result.begin(),result.end(),v2[i]); if(it!=result.end()) result.erase(it); } return result; } string getStr(vector<string> v1,vector<string> v2) //根据前件和后件得到规则 { int i; string rStr; for(i=0;i<v1.size();i++) rStr+=v1[i]+" "; rStr=rStr.substr(0,rStr.size()-1); rStr+="->"; for(i=0;i<v2.size();i++) rStr+=v2[i]+" "; rStr=rStr.substr(0,rStr.size()-1); return rStr; } void ap_generateRules(string fs) { int i,j,k; vector<string> v=split(fs,' '); vector<string> h; vector< vector<string> > H; //存放所有的后件 int fCount=calculateSupportCount(v); //f的支持度计数 for(i=0;i<v.size();i++) //先生成1-后件关联规则 { vector<string> temp=v; temp.erase(temp.begin()+i); int aCount=calculateSupportCount(temp); if( fCount >= ceil(aCount*minConf)) //如果满足置信度要求 { h.push_back(v[i]); string tempStr; for(j=0;j<v.size();j++) { if(j!=i) tempStr+=v[j]+" "; } tempStr=tempStr.substr(0,tempStr.size()-1); tempStr+="->"+v[i]; R.push_back((tempStr)); } } H.push_back(v); if(h.size()!=0) H.push_back(h); for(k=2;k<v.size();k++) //生成k-后件关联规则 { h=H[k-1]; vector<string> addH; for(i=0;i<h.size()-1;i++) { vector<string> v1=split(h[i],' '); for(j=i+1;j<h.size();j++) { vector<string> v2=split(h[j],' '); if(judgeItem(v1,v2)) { vector<string> tempVector=v1; tempVector.push_back(v2[v2.size()-1]); //得到后件集合 sort(tempVector.begin(),tempVector.end()); vector<string> filterV=removeItemFromSet(v,tempVector); //得到前件集合 int aCount=calculateSupportCount(filterV); //计算前件支持度计数 if(fCount >= ceil(aCount*minConf)) //如果满足置信度要求 { string rStr=getStr(filterV,tempVector); //根据前件和后件得到规则 string hStr; for(int s=0;s<tempVector.size();s++) hStr+=tempVector[s]+" "; hStr=hStr.substr(0,hStr.size()-1); addH.push_back(hStr); //得到一个新的后件集合 R.push_back(rStr); } } } } if(addH.size()!=0) //将所有的k-后件集合加入到H中 H.push_back(addH); } } void generateRules() //生成关联规则 { int i,j,k; for(k=2;k<F.size();k++) { vector<string> f=F[k]; for(i=0;i<f.size();i++) { string str=f[i]; ap_generateRules(str); } } } void outputFrequenceSet() //输出频繁项目集 { int i,k; if(F.size()==1) { cout<<"无频繁项目集!"<<endl; return; } for(k=1;k<F.size();k++) { cout<<k<<"-频繁项目集:"<<endl; vector<string> f=F[k]; for(i=0;i<f.size();i++) cout<<f[i]<<endl; } } void outputRules() //输出关联规则 { int i; cout<<"关联规则:"<<endl; for(i=0;i<R.size();i++) { cout<<R[i]<<endl; } } void Apriori() { initTransactionSet(); genarateOneFrequenceSet(); generateKFrequenceSet(); outputFrequenceSet(); generateRules(); outputRules(); } int main(int argc, char *argv[]) { Apriori(); return 0; }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27