机器学习主要分为:有监督学习,无监督学习,以及半监督学习等。小编今天给大家分享的主要是有监督学习和无监督学习的比较,希望对于大家机器学习有所帮助。
1、有监督学习(supervised learning)是指从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。有监督学习的训练集要求包括输入输出,也可以说是特征和目标。训练集中的目标是由人标注的。
以此可以总结出 有监督学习的特点:
(1)有标签的就是有监督学习。
(2) 已经标记好的数据(labelled data),用来做训练来预测新数据的类型(class),或者是值。预测已有类型叫做分类(classification),预测一个值叫做回归(regression)。
(3) 常见的有监督学习算法:回归分析和统计分类。
常见的有监督学习算法:回归分析和统计分类。最典型的算法是KNN和SVM。
2、无监督学习(或者非监督学习,unsupervised learning)输入数据没有被标记,也没有确定的结果。样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类,clustering)试图使类内差距最小化,类间差距最大化。无监督学习是另一种研究的比较多的学习方法,它与监督学习的不同之处,在于我们事先没有任何训练样本,而需要直接对数据进行建模。
无监督学习的方法分为两大类:
(1) 一类为基于概率密度函数估计的直接方法:指设法找到各类别在特征空间的分布参数,再进行分类。
(2) 另一类是称为基于样本间相似性度量的简洁聚类方法:其原理是设法定出不同类别的核心或初始内核,然后依据样本与核心之间的相似性度量将样本聚集成不同的类别。
利用聚类结果,可以提取数据集中隐藏信息,对未来数据进行分类和预测。应用于数据挖掘,模式识别,图像处理等。
PCA和很多deep learning算法都属于无监督学习。
1.有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而无监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。
2.有监督学习的方法就是识别事物,识别的结果表现在给待识别数据加上了标签。因此训练样本集必须由带标签的样本组成。而无监督学习方法只有要分析的数据集的本身,预先没有什么标签。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不予以某种预先分类标签对上号为目的。
3.无监督学习方法在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集的目的,也就是说不一定要“分类”。在这一点上无监督学习比有监督学习方法的用途要广。
4.用无监督学习方法分析数据集的主分量与用K-L变换计算数据集的主分量又有区别。后者从方法上讲不是学习方法。因此用K-L变换找主分量不属于无监督学习方法,即方法上不是。而通过学习逐渐找到规律性这体现了学习方法这一点。在人工神经元网络中寻找主分量的方法属于无监督学习方法。
最简单的方法就是从定义入手,
有训练样本则考虑采用监督学习方法;
无训练样本,则一定不能用监督学习方法。
需要注意的是,实际应用中,即使在没有训练样本的情况下,我们也能够从待分类的数据中,对一些样本进行人工标注,并将它们作为训练样本,这样一来,就能够把条件进行改善,使用有监督学习方法来做。在不同的场景,正负样本的分布如果会存在偏移,这种情况下,有监督学习的效果可能没有无监督学习的效果好。
以上就是小编今天跟大家分享的关于有监督学习和无监督学习的区别。在机器学习中,有监督学习和无监督学习是最常用的两种学习方法了,大家一定要清楚两者之间的区别,以及两者的适用场景。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16