机器学习中,我们最常遇到的就是无监督,有监督,半监督了。无监督和有监督的区别,小编之前跟大家分享过,今天跟大家分享的是无监督机器学习中常见的聚类算法,希望对大家无监督学习有所帮助。
一、基本概念
1.无监督学习:
无监督学习是机器学习的一种方法,根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题。无监督学习应用主要包含:聚类分析、关系规则、维度缩减。
2.聚类:
无监督学习里典型例子是聚类。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。
最常见的无监督聚类算法:
K均值聚类
分层聚类
基于密度的扫描聚类(DBSCAN)
二、无监督聚类算法--K均值聚类
K均值聚类 是我们最常用的基于欧式距离的聚类算法,它是数值的、非监督的、非确定的、迭代的,该算法旨在最小化一个目标函数——误差平方函数(所有的观测点与其中心点的距离之和),其认为两个目标的距离越近,相似度越大,由于具有出色的速度和良好的可扩展性,K均值聚类算得上是最著名的聚类方法。
1.K均值中最常用的距离是欧氏距离平方。m维空间中两点x和y之间的距离的示例是:
这里,j是采样点x和y的第j维(或特征列)。
集群惯性是聚类上下文中给出的平方误差之和的名称,表示如下:
其中μ(j)是簇j的质心,并且如果样本x(i)在簇j中则w(i,j)是1.否则是0.
K均值可以理解为试图最小化群集惯性因子的算法。
2.具体算法
(1)选择k值,即我们想要查找的聚类数量。
(2)算法将随机选择每个聚类的质心。
(3)将每个数据点分配给最近的质心(使用欧氏距离)。
(4)计算群集惯性。
(5)将计算新的质心作为属于上一步的质心的点的平均值。换句话说,通过计算数据点到每个簇中心的最小二次误差,将中心移向该点。
(6)返回第3步。
二、无监督聚类算法--分层聚类
1.分层聚类是基于prototyope的聚类算法的替代方案。分层聚类的主要优点是不需要指定聚类的数量,它会自己找到它。此外,它还可以绘制树状图。树状图是二元分层聚类的可视化。
在底部融合的观察是相似的,而在顶部的观察是完全不同的。对于树状图,基于垂直轴的位置而不是水平轴的位置进行结算。
2.分层聚类的类型
分层聚类有两种方法:集聚和分裂。
分裂:这种方法首先将所有数据点放入一个集群中。 然后,它将迭代地将簇分割成较小的簇,直到它们中的每一个仅包含一个样本。
集聚:这种方法从每个样本作为不同的集群开始,然后将它们彼此靠近,直到只有一个集群。
3.分层聚类优缺点
分层聚类的优点;
(1)由此产生的层次结构表示可以提供非常丰富的信息。
(2)树状图提供了一种有趣且信息丰富的可视化方式。
(3)当数据集包含真正的层次关系时,它们特别强大。
分层聚类的缺点:
(1)分层聚类对异常值非常敏感,并且在其存在的情况下,模型性能显着降低。
(2)从计算上讲,分层聚类非常昂贵。
三、无监督聚类算法--DBSCAN 聚类
DBSCAN(带噪声的基于密度的空间聚类方法)是一种流行的聚类算法,它被用来在预测分析中替代 K 均值算法。它并不要求输入簇的个数才能运行。但是,你需要对其他两个参数进行调优。
优缺点:
1.优点
①不需要指定簇的个数;
②可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类的聚类算法一般只适用于凸数据集;
③擅长找到离群点(检测任务);
④两个参数ε\varepsilonε和minPts就够了;
⑤聚类结果没有偏倚,相对的,K-Means之类的聚类算法初始值对聚类结果有很大影响。
2.缺点
①高维数据有些困难;
②Sklearn中效率很慢(数据削减策略);
③如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合;
④调参相对于传统的K-Means之类的聚类算法稍复杂,主要需要对距离阈值ε\varepsilonε,邻域样本数阈值MinPts联合调参,不同的参数组合对最后的聚类效果有较大影响。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20