
把近朱者赤,近墨者黑这一思想运用到机器学习中会产生什么?当然是KNN最邻近算法啦!KNN(全称K-Nearest Neighbor)最邻近分类算法是数据挖掘分类算法中最简单的算法之一,白话解释一下就是:由你的邻居来推断出你的类别。那么KNN算法的原理是什么,如何实现?一起与小编来看下面的内容吧。
一、KNN最邻近算法概念
KNN最邻近算法,是著名的模式识别统计学方法之一,在机器学习分类算法中占有很高的地位。KNN最邻近算法在理论上比较成熟,不仅是最简单的机器学习算法之一,而且也是基于实例的学习方法中最基本的,最好的文本分类算法之一。
KNN最邻近算法基本做法是:给定测试实例,基于某种距离度量找出训练集中与其最靠近的k个实例点,然后基于这k个最近邻的信息来进行预测。
KNN最邻近算法不具有显式的学习过程,事实上,它是懒惰学习(lazy learning)的著名代表,此类学习技术在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理。
二、KNN最邻近算法三要素
KNN最邻近算法三要素为:距离度量、k值的选择及分类决策规则。根据选择的距离度量(如曼哈顿距离或欧氏距离),可计算测试实例与训练集中的每个实例点的距离,根据k值选择k个最近邻点,最后根据分类决策规则将测试实例分类。
1.距离度量
特征空间中的两个实例点的距离是两个实例点相似程度的反映。K近邻法的特征空间一般是n维实数向量空间Rn。使用的距离是欧氏距离,但也可以是其他距离,如更一般的Lp距离或Minkowski距离。
这里p≥1.
当p=1时,称为曼哈顿距离(Manhattan distance),即
当p=2时,称为欧氏距离(Euclidean distance),即
2.k值的选择
k值的选择会对KNN最邻近算法的结果产生重大影响。在应用中,k值一般取一个比较小的数值,通常采用交叉验证法来选取最优的k值。
3.分类决策规则
KNN最邻近算法中的分类决策规则通常是多数表决,即由输入实例的k个邻近的训练实例中的多数类,决定输入实例的类。
三、KNN最邻近算法优缺点
1.优点
①简单,易于理解,易于实现,无需参数估计,无需训练;
②精度高,对异常值不敏感(个别噪音数据对结果的影响不是很大);
③适合对稀有事件进行分类;
④特别适合于多分类问题(multi-modal,对象具有多个类别标签),KNN要比SVM表现要好.
2.缺点
①对测试样本分类时的计算量大,空间开销大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本;
②可解释性差,无法给出决策树那样的规则;
③最大的缺点是当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进;
④消极学习方法。
四、KNN算法实现
主要有以下三个步骤:
1. 算距离:给定待分类样本,计算它与已分类样本中的每个样本的距离;
2. 找邻居:圈定与待分类样本距离最近的K个已分类样本,作为待分类样本的近邻;
3. 做分类:根据这K个近邻中的大部分样本所属的类别来决定待分类样本该属于哪个分类;
python示例
import math import csv import operator import random import numpy as np from sklearn.datasets import make_blobs #Python version 3.6.5 # 生成样本数据集 samples(样本数量) features(特征向量的维度) centers(类别个数) def createDataSet(samples=100, features=2, centers=2): return make_blobs(n_samples=samples, n_features=features, centers=centers, cluster_std=1.0, random_state=8) # 加载鸢尾花卉数据集 filename(数据集文件存放路径) def loadIrisDataset(filename): with open(filename, 'rt') as csvfile: lines = csv.reader(csvfile) dataset = list(lines) for x in range(len(dataset)): for y in range(4): dataset[x][y] = float(dataset[x][y]) return dataset # 拆分数据集 dataset(要拆分的数据集) split(训练集所占比例) trainingSet(训练集) testSet(测试集) def splitDataSet(dataSet, split, trainingSet=[], testSet=[]): for x in range(len(dataSet)): if random.random() <= split: trainingSet.append(dataSet[x]) else: testSet.append(dataSet[x]) # 计算欧氏距离 def euclideanDistance(instance1, instance2, length): distance = 0 for x in range(length): distance += pow((instance1[x] - instance2[x]), 2) return math.sqrt(distance) # 选取距离最近的K个实例 def getNeighbors(trainingSet, testInstance, k): distances = [] length = len(testInstance) - 1 for x in range(len(trainingSet)): dist = euclideanDistance(testInstance, trainingSet[x], length) distances.append((trainingSet[x], dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distances[x][0]) return neighbors # 获取距离最近的K个实例中占比例较大的分类 def getResponse(neighbors): classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) return sortedVotes[0][0] # 计算准确率 def getAccuracy(testSet, predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: correct += 1 return (correct / float(len(testSet))) * 100.0 def main(): # 使用自定义创建的数据集进行分类 # x,y = createDataSet(features=2) # dataSet= np.c_[x,y] # 使用鸢尾花卉数据集进行分类 dataSet = loadIrisDataset(r'C:\DevTolls\eclipse-pureh2b\python\DeepLearning\KNN\iris_dataset.txt') print(dataSet) trainingSet = [] testSet = [] splitDataSet(dataSet, 0.75, trainingSet, testSet) print('Train set:' + repr(len(trainingSet))) print('Test set:' + repr(len(testSet))) predictions = [] k = 7 for x in range(len(testSet)): neighbors = getNeighbors(trainingSet, testSet[x], k) result = getResponse(neighbors) predictions.append(result) print('>predicted=' + repr(result) + ',actual=' + repr(testSet[x][-1])) accuracy = getAccuracy(testSet, predictions) print('Accuracy: ' + repr(accuracy) + '%') main()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23