提到噪声,你会想到什么?刺耳的,高分贝的声音?总之就是不好的,不想接受的声音。小编今天跟大家分享的就是python数据清洗中的噪声数据,对于这些噪声数据我们应该怎样检测和处理呢?下面跟小编一起来看吧。
一、什么是噪声数据
噪声数据Noisy Data,噪声值,指的是数据中存在着一个或中者几个错误的,或者偏离期望值的数据,又可以叫做异常值、或者离群值(outlier),这些数据会对数据的分析造成了干扰,我们需要在python数据清洗时将这些数据清洗掉。
举一个最简单的例子来理解噪声数据,在一份统计顾客年龄的名单中,有数据为顾客年龄:-50.显然这个数据就是噪声数据。
二、噪声数据检测
噪声数据的检测方法有很多,小编这这里介绍三种最常用的方法。
1.3∂原则
数据需要服从正态分布。若一个数据分布近似正态,则大约 68% 的数据值会在均值的一个标准差范围内,大约 95% 会在两个标准差范围内,大约 99.7% 会在三个标准差范围内。在3∂原则下,异常值如超过3倍标准差,那么可以将其视为异常值。如果数据不服从正态分布,我们就可以通过远离平均距离多少倍的标准差来判定(多少倍的取值需要根据经验和实际情况来决定)。
2.箱线图是通过数据集的四分位数形成的图形化描述。是非常简单而且效的可视化离群点的一种方法。上下须为数据分布的边界,只要是高于上须,或者是低于下触须的数据点都可以认为是离群点或异常值。
下四分位数:25%分位点所对应的值(Q1)
中位数:50%分位点对应的值(Q2)
上四分位数:75%分位点所对应的值(Q3)
上须:Q3+1.5(Q3-Q1)
下须:Q1-1.5(Q3-Q1)
其中Q3-Q1表示四分位差
3.k-means
k-means是基于聚类的离群点识别方法,其主要思想是一个对象是基于聚类的离群点,如果该对象不强属于任何簇,那么该对象属于离群点。
三、噪声数据处理
噪声数据最直接简单的方法是:找到这些孤立于其他数据的记录直接删除。但是这样做有很大的缺点,很可能会都是大量有用、干净的信息。小编在这里整理了几种python数据清洗时常用的噪声数据处理方法,希望对大家有所帮助。
1.分箱
分箱法通过考察数据的“近邻”来光滑有序数据的值。有序值分布到一些桶或箱中。
分箱法包括等深分箱:每个分箱中的样本量一致;等宽分箱:每个分箱中的取值范围一致。直方图其实首先对数据进行了等宽分箱,再计算频数画图。
分箱方法是一种简单而且常用的python数据清洗方法,通过考察近邻数据来确定最终值。“分箱”其实也就是指按照属性值划分的子区间,一个属性值如果处于某个子区间范围内,就当做把该属性值放进这个子区间所代表的“箱子”内。按照一定的规则将待处理的数据(某列属性值)放进一些箱子中,考察每个箱子里的数据,并且采用某种方法对各个箱子中的数据分别进行处理。采用分箱技术的两个关键问题是:(1)如何分箱(2)如何对每个箱子中的数据进行平滑处理。
分箱的方法通常有4种,分别为:等深分箱法、等宽分箱法、最小熵法和用户自定义区间法。
(1)等深分箱法,又叫做统一权重,是指将数据集按记录行数分箱,每箱样本量一致。最简单的一种分箱方法。
(2)等宽分箱法,统一区间,使数据集在整个属性值的区间上平均分布,也就是每个分箱中的取值范围一致。
(3)用户自定义区间,用户可以根据实际情况自定义区间,使用这种方法能帮助当用户明确观察到某些区间范围内的数据分布。
2.回归
发现两个相关的变量之间的变化模式,通过使数据适合一个函数来平滑数据。
若是变量之间存在依赖关系,也就是y=f(x),那么就可以设法求出依赖关系f,再根据x来预测y,这也是回归问题的实质。实际问题中更常为见的假设是p(y)=N(f(x)),N为正态分布。假设y是观测值并且存在噪声数据,根据我们求出的x和y之间的依赖关系,再根据x来更新y的值,这样就能去除其中的随机噪声,这就是回归去噪的原理 。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30