小编以前简单跟大家分享过方差分析。先来回顾一下概念:方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用于两个及两个以上样本均数差别的显著性检验。但是对于方差分析更深层次的理解,很多刚接触的小白了解的还不是很多,所以小编今天就跟大家分享一篇文章:从协方差分析看回归与方差分析的联系,希望对大家有所帮助。
以下文章来源: 丁点帮你微信公众号
作者:丁点helper
无论是单因素还是双因素方差分析,我们可以发现,它们都有一些共性,比如研究的因变量(如前文的硒含量、满意度得分),都是定量变量;而自变量,即分组变量(如地区、教育程度、性别)都是定性变量。
现在我们将前文“满意度得分的例子”继续延伸:除了我们关注的“教育程度”和“性别”外,还有其他变量会影响人们对生活的满意度得分吗?
当然有,比如收入水平!
很显然,一个人的工资多少完全可能直接决定他目前对生活的满意度。因此,倘若我们忽视了调查对象的收入情况,仅研究教育程度和性别的影响,这样就可能造成结果产生偏移,也就是说可能本来没意义的结果变成了有意义,从而得出误导性的判断。
因此,在这种情况下,“收入”这个变量就被称为“协变量”,可以记为“Z”。纳入协变量的方差分析,即称协方差分析。
一般而言,进行协方差分析的协变量为“定量变量”,比如本例中的“人均月收入”,它一般不是研究者重点研究的变量(本例中重点研究的是教育程度和性别),但因为它会对分析结果造成干扰,因此在分析过程中必须要将其纳入。
所以,协方差分析仍然是建立在方差分析这个基本框架之上的,其思想与单因素以及双因素方差分析区别也不大,并且在进行分析前数据需要满足的条件也都需要。
此外,因为加入了一个新的变量——协变量,所以也有些额外了条件需要满足。我们今天对这些条件做些概述。
1)变量的类型:一般而言,进行协方差分析,因变量是定量的连续变量(如本例的“满意度得分”);自变量是分类变量(可以加入多个自变量,如本例中的“教育程度”和“性别”);协变量是连续变量(如本例的“收入”)。
2)线性关系:原则上需要协变量与因变量存在线性关系。
3)平行性假设:分组变量的不同水平下,协变量与因变量的回归直线互相平行。
线性假设和平行性假设初次看起来可能比较难理解,但实际上就是为了排除所谓的交互作用。什么是交互作用呢?
比如我们想研究“教育程度”与“满意度得分”的关系,协变量是收入。在不考虑协变量时,发现随着教育程度的升高,人们的满意度得分也逐渐升高,比如教育上升一个等级(从“高中毕业”到“大学本科”,或者从“大学本科”升至“研究生及以上”),满意度得分都会增加5分。
现在加入“收入”这个协变量之后,发现随着教育程度升高,满意度得分也升高,但是不同的学历程度,其升高的幅度不一样。
比如,加入协变量之后,从“高中毕业”升至“大学本科”,满意度得分仍增加5分;但如果从“大学本科”升至“研究生及以上”,满意度得分仅仅增加3分。这个时候,我们就说收入与教育程度产生了交互作用。
产生了交互作用,也就意味着收入对生活满意度的影响会随着教育程度的变化而变化(注意这里的措辞,收入影响的是满意度和教育程度的相关关系,而不仅仅是其中某一个变量,这是理解交互作用的核心)
这句话也可以反过来说。教育程度对生活满意度的影响会随着人们收入不同而不同,用线性回归的术语来表示就是:不同的教育程度下,收入与满意度得分的回归直线斜率(β)不同,因此,它们就不会平行(两直线平行需要斜率相同)。
所以,想满足平行线假设,就需要协变量与自变量之间不存在交互作用,这个可以通过专门的检验方法来判断。
看到这里,你可能会疑惑,明明在讲方差分析,怎么扯到回归的内容了?
是的,方差分析和回归分析实际上可以看做是一回事儿,只是两者侧重点略有不同,前者主要是比较差异,后者主要是算影响的效应值(即回归系数β,这一点我们后面详述)。
一方面对于多因素或协方差分析的SPSS操作,我们称作“一般线性模型”;另外在进行回归分析之后软件也都会首先弹出一个方差分析的大表,检验整个回归模型是否有意义。
只不过我们在进行回归分析时,并没有严格区分自变量和协变量,而是将它们一股脑地全部纳入回归模型,然后筛选出最终有意义的变量。
因此,我们现在讲的方差分析,其实就是后续回归分析的一些特例,从回归的角度理解方差分析,相信你会看的更加明了!
回到我们今天的主题,除了上述三个条件,在进行协方差分析时也需要注意其他条件,比如常说的正态、独立、方差齐等,处理的方法也和普通的方差分析基本相同,暂不赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31