在商业分析中,我们经常会遇到以下问题:
不知道如何进行用户行为分析,对用户进行分类?
不知道哪些是重要价值客户,他们能带来什么,应该如何维护?
这时候就需要用到用户行为分析模型也就是我们通常所说的RFM模型了。小编今天就给大家分享一下RFM模型的构建以及应用,希望对大家商业分析有所帮助。
一、RFM模型简介
RFM模型,是根据客户活跃程度以及交易金额的贡献,对客户价值进行细分的一种方法,是客户关系管理中常应用到的一种操作模型。RFM模型从R、F、M、这3个维度来描述客户的价值,下面来具体解释一下R、F、M、这3个维度。
R:上一次消费 (Recency),客户上一次消费的时间,时间越是接近就表示该客户越有价值,对于提供的即时商品或是服务,这些客户是最有可能反应的。
F:消费频率 (Frequency),一段时间之内对产品的消费频次,也就是客户在限定的期间内的购买的次数。通常来说,客户消费频率越高,也就表示该客户忠诚度越高。
M:消费金额 (Monetary),用户的贡献价值,交易金额越高,该客户价值越高。帕雷托法则认为公司80%收入来自20%的客户。
二、RFM模型使用场景
RFM模型3个维度可根据实际需求变化,例如:
R:最近一次登录时间、最近一次发帖时间、最近一次投资时间、最近一次观看时间
F:浏览次数、发帖次数、评论次数
M:充值金额、打赏金额、评论数、点赞数
互动行为:最近一次互动时间、互动频次、用户的互动次数;
直播行为:最近一次观看直播时间、直播观看频次、观看直播累计时长;
内容行为:最近一次观看内容时间、观看内容频次、观看内容字数;
评论行为:最近一次评论时间、评论频次、累计评论次数等等等等。
三、RFM模型搭建
1.计算每个客户的RFM指标。可以利用CRM软件或者BI分析工具计算出每个客户的R,F,M
2.根据实际业务需求,确定具体的R,F,M的度量范围。
3.在RFM表格中添加细分的段号。
因为有R,F,M三个变量,所以我们需要使用三维坐标系来进行展示,X轴表示R,Y 轴表示F,Z轴表示M,坐标系的8个象限分别表示8类用户也就是:重要价值客户、重要保持客户、重要发展客户、重要挽留客户、一般价值客户、一般保持客户、一般发展客户、一般挽留客户,我们可以用如下图形进行描述:
四、简单示例
import pandas as pd import numpy as np import time #todo 读取数据 data = pd.read_csv('RFM_TRAD_FLOW.csv',encoding='gbk') # print(ret) # todo RFM------>R(最近一次消费) #todo 时间与字符串相互转换 data['time'] = data['time'].map(lambda x:time.mktime(time.strptime(x,'%d%b%y:%H:%M:%S'))) # print(data) # todo 分组 groupby_obj = data.groupby(['cumid','type']) # for name,data in groupby_obj: # print(name) # print(data) # todo 取值 R = groupby_obj[['time']].max() # print( # todo 转为透视表 r_trans = pd.pivot_table(R,index='cumid',columns='type',values='time') # print(data_trans) # todo 替换缺失值 有缺失值,替换成最远的值 r_trans[['Special_offer','returned_goods']] = r_trans[['Special_offer','returned_goods']].apply(lambda x:x.replace(np.nan,min(x)),axis = 0) # print(data_trans) r_trans['r_max'] = r_trans.apply(lambda x:sum(x),axis=1) # print(r_trans) # todo RFM------>F(消费频率) # 取值 F =groupby_obj[['transID']].count() # print(F) #转为透视表 f_trans = pd.pivot_table(F,index='cumid',columns='type',values='transID') # print(f_trans) #替换缺失值 f_trans[['Special_offer','returned_goods']]= f_trans[['Special_offer','returned_goods']].fillna(0) # print(f_trans) # f_trans['returned_goods'] = f_trans['returned_goods'].map(lambda x:-x) # print(f_trans) f_trans['f_total'] = f_trans.apply(lambda x:sum(x),axis=1) # print(f_trans) # todo RFM------>M(消费金额) # 取值 M =groupby_obj[['amount']].sum() # print(M) #转为透视表 m_trans = pd.pivot_table(M,index='cumid',columns='type',values='amount') # print(f_trans) #替换缺失值 m_trans[['Special_offer','returned_goods']]= m_trans[['Special_offer','returned_goods']].fillna(0) # print(f_trans) # m_trans['m_total'] = m_trans.apply(lambda x:sum(x),axis=1) # print(m_trans) # 合并 RFM=pd.concat([r_trans["r_max"],f_trans['f_total'],m_trans['m_total']],axis=1) print(RFM) r_score = pd.cut(RFM.r_max,3,labels=[0,1,2]) f_score = pd.cut(RFM.r_max,3,labels=[0,1,2]) m_score = pd.cut(RFM.r_max,3,labels=[0,1,2])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19