关于方差分析的一些内容,小编已经跟大家分享过很多次了,但基本上就是理论部分,没有结合具体实例。在学习数据分析过程中,大家一定要注意理论结合实操才能更好地掌握。下面小编给大家带来一篇文章:方差分析全解析:以one-way为例,希望对于大家加深方差分析的理解有所帮助。
文章来源: 丁点帮你
作者:丁点helper
昨天的文章,我们对方差分析的整体逻辑进行了初步的介绍,今天将以单向(one-way)方差分析为例,具体梳理方差分析的整个过程。
单向(one-way)方差分析,就是大家很熟悉的单因素方差分析(教科书上叫单向), 一般也称完全随机设计(completely randomized design)的方差分析,是指将研究对象通过完全随机化方法,分配至多个不同的处理组,比较多组的效应指标是否存在差别。
先看如下案例:
为了解大骨节病与粮食中微量元素硒含量之间的关系,某研究团队调查了A(渭源县)、B(青州市)两个大骨节病区和C(泰山区)、D(长清区)两个非大骨节病区。
每个病区随机抽取20户农户并采集面粉,检测面粉中硒元素含量(μg/kg),试分析这4个地区面粉中硒含量是否存在差异。具体的数据情况如下表1。
表1 四地区面粉硒元素含量样本数据表
我们将上述数据绘制成图形(如下图,每个空心小圆圈代表一个样本值),可以很直观地看到,这80个样本值(20*4)各不相同,即它们存在差异。
暂时忽略其他潜在的混杂因素,这种差异的原因可能是由于它们来自不同的地区,但因为四个小组内部的数值也都一一不同,所以,差异也可能仅仅是因为随机误差,通俗地理解就是人们说的运气导致的。
不过,仔细地观察发现两个病区的数据好像明显要低一些,这便提示地区的不同确实有可能造成了目前的差异。
为了验证我们的猜测,就可以采用方差分析来检验:病区与非病区面粉硒含量的差异是否具有统计学意义。
这里需要再明确一点的是,我们的目标是比较这四个地区面粉中硒含量是否有差异,在实际操作中,我们比较的是四个地区硒含量的总体平均数,因此,只要总体平均数有差异,我们就说四地区硒含量有差异。
要进行方差分析,当然,我们首先要进行假设:这四组数据都没有差异,注意是都没有!
在这个假设下,我们可以把这四组数据看做是一个大组,即将上述80个数据视为一个整体。对于这个整体,我们可以计算一个平均数和标准差,即表1中72.22和20.00。
可是实际情况下,这80个数据是分属于四个小组的,因此我们也可以分别计算这四个小组的平均数,即57.11、55.58、85.62、90.55。
如果假设成立(即四组数据都没有差异),那么这四个小组的平均数应该是围绕着整体平均数(即72.22)上下波动的,互相差异应该不是很大。
但现在我们实际获得的数据却显示,小组中最低的均数为57.11、最大的为90.55,直观上看都与72.22的距离不小,所以我们就会怀疑不能把它们看做一个整体(更严谨的表达是,它们不是来自同一个总体),从而拒绝它们相同的假设。
顺着这个思路,我们获得下面这张表格(表2):
表2 方差分析一般结果表
上述表格中涉及的具体的计算过程大家不需要细看,只需大概了解所谓的“离均差平方和(SS)”和“均方(MS)”的计算方法。
然后对照前面我们谈到的方差的概念和计算方法,你是否会发现,不明所以的“均方(MS)”其实可以看做是一种特殊类型的“方差”!
对照下图方差的计算公式:左边是离均差平方和,右边是自由度。
我们首先看衡量“组内变异”的均方(MS组内),在各个小组内部因为没有地区差异,所以MS组内的大小大小仅反映了随机误差(即运气)的情况。
而当假设四组总体均数相同时,组间均方(MS组间)的大小也仅仅反映随机误差的大小。
如何理解这里的谈到的“随机误差”呢?
对于来自同一个总体的两个或多个样本的差异我们可以简单理解为随机误差,也就是说,虽然表面上它们不同,但这种不同并没有意义,也不会反映额外的信息,仅仅是因为运气导致的。
好比你和别人掷色子比大小,虽然你们获得的点数不同,但这种不同完全是因为运气,不能说明任何其他的问题,同时也不会出现一个人总赢、另一个总输的局面。
但是如果对方悄悄在色子上做了点手脚,知道怎样掷可以获得大的点数,这个时候,你们点数的差异就不再仅仅因为运气,还有色子的原因。
用统计学的语言来说,就是你们的差异不仅包含了随机误差,还包含了其他因素。所以,下次如果感觉自己总是在输,就要看看是不是色子出现了问题。
回到本例,既然MS组间和MS组内这两者都仅反映随机误差的大小,那么其携带的信息量就应该没有差异(提示:方差的大小决定了数据的信息量)。
由此,在数值上MS组间与MS组内差异不大,所以使用MS组间除以MS组内时,所获得F值原则上应该在1附近。
如果现在我们获得的数据计算出来的F值比1大很多(对应的P值会很小),则意味着MS组间远大于MS组内,从而表示,MS组间携带了多余的信息,因此,可以证明MS组间的差异不仅仅包含随机误差,还包含其他因素(比如地区不同),结合本例,即意味着四地区间面粉硒含量不都相同!
将上述数据用SPSS运算后获得结果如下表3。很显然,F值超过46,远大于1(注意,在正式情况下F值并非和1比较,这里仅为了方便理解),其对应的P值远小于0.05,由此拒绝零假设,差异有统计学意义,可以认为这四个地区硒含量的总体均数不全相等,也就是说至少有两个地区总体均数不等。
表3 四地区硒含量方差分析结果表
单向方差分析仅告诉我们这四个总体均数不全相等,但具体哪几个不等,哪几个相等呢?这就涉及到两两比较了,这就是我们明天的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25