上一篇文章给大家分享了一些关于维度表和事实表的内容,今天给大家带来的是关于维度表技术的一些内容,希望对大家有所帮助。
一、维度表结构
1.每个维度表都包含单一的主键列。
3.维度表通常比较宽,是扁平型非规范表,包含大量的低粒度的文本属性。
二、常见维度表技术
1.维度代理键
DW/BI需要申明对所有的维度的主键的空置,无法采用自然键或者附加日期的自然键。最好是建立无语意的整型主键。
2.自然键、持久键、超自然键
自然键,例如员工编号
持久键,有时也被叫做超自然持久键。数据仓库为员工编号创建一个单一键,这个单一键保持永久性不会发生变化。
最后的持久键应该独立于原始的业务过程。
3.下钻
商业分析的基本方法:
上卷(roll-up):上卷是沿着维的层次向上聚集汇总数据。 例如,对产品销售数据,沿着时间维上卷,可以求出所有产品在所有地区每月 (或季度或年或全部)的销售额。
下探(drill-down):下探是上卷的逆操作,它是沿着维的层次向下,查看更详细的数据。
3.空值属性
推荐采用标识性标识空值,例如unknown。因为不同数据库对空值处理不同。
4.日历日期维度
用YYYYMMdd更容易划分。
5.维度子集
一些需求是不需要最细节的数据的,那么此时事实数据需要关联特定的维度,这些特定维度包含在从细节维度选择的行中,因此就叫做维度子集。
细节维度和维度子集具有相同的属性或内容,具有一致性。
(1)建立包含属性子集的子维度
例如需要上钻到子维度。
(2)建立包含行子集的子维度
在两个维度处于同一细节粒度的情况下,如果其中一个仅仅是行的子集,那么就会产生另外一种一致性维度构造子集。
在某些版本的Hive中,对ORC表使用overwrite会出错,为了保持兼用性,通常会使用truncate 。
(3)使用视图实现维度子集
这种方式存在着两个主要问题:一是新创建的子维度是物理表,因此需要额外的存储空间;二是存在数据不一致的潜在风险。
通常的解决方法是在基本维度上建立视图生成子维度。
优点:
a.可以简单实现,不需要修改原来脚本的逻辑;
b.因为视图不真正存储数据,因此不会占用存储空间;
c.将数据不一致的可能消除掉。
缺点:
a.如果基本维度和子维度表数据量相差悬殊的话,性能比物理表差很多;
b.如果定义视图查询,并且视图很多,可能对元数据存储系统造成压力,严重影响查询性能。
6.层次维度
通常我们使用grouping__id 二进制序列,rollup,collect_set,concat_ws等函数。
层次关系方法:固定深度层次进行分组和钻取查询,递归层次结构数据装载、展开与平面化,多路径层次和参差不齐处理
7.退化维度
除了业务主键外没有其他内容的维度表。
8.杂项维度
包含数据具有很少可能值的维度。有时与其为每个标志或属性定义不同的维度,不如建立单独的讲不同维度合并到一起的杂项维度。
9.维度合并
如果几个相关维度的基数都很小,或者具有多个公共属性时,可以考虑合并。
10.分段维度
包含连续的分段度量值,通常用作客户维度的行为标记时间序列,分析客户行为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30