CDAS2016中国数据分析师行业峰会圆桌会议环境,众多数据科学界的专家针对数据分析师行业的人才发展展开了交流和讨论。
专家们一致认为不管在国内还是在国外,数据科学家都是稀缺资源。而要成为数据科学家,首先要成为优秀的分析师。
IBM大数据大学首席数据科学家Saeed Aghabozorgi认为,数据科学家有多年数据分析的经验,可以回答管理者的问题,帮助管理者进行决策,提供决策依据报告;但数据分析师的工作相对简单,可以每日接触数据,如果有必要创立新的算法,也可以做算法方面的研发,“数据分析师可能是初级的数据科学家”。
不管是数据分析师还是数据科学家,对数据的深刻理解离不开对业务的深入认识。对此,CDA数据分析研究院院长常国珍介绍,CDA数据分析师在建立之初就比较偏重于业务,在逐步建立课程体系的过程当中,也注重引入企业案例课程,培养数据分析师的实战能力。
那么,如何从小白一步步进阶成为数据科学家呢?
纽约时报的一篇文章告诉我们,成为数据科学家真的是很简单的事情。在修完几门数据科学的课之后,一个做web开发的创业公司,就会因为你的新技能,高薪聘请你了。然后出任CEO,迎娶白富美。
首先,知己知彼,方能百战而不怠,数据科学家作为企业运营发展的贤内助和灵魂人物,他的技能构成是:
然后,我们深入企业,了解企业中心团队的人员构成:
20%:IT团队
Task:数据仓库和数据管理;仪表盘和业务指标;KPI设计级标准;特定的管理信息系统
30%:业务团队
Task:生成营销活动清单,确定规模;测试、控制和维护;营销活动部署;设计营销方案;联络策略
50%:分析团队
Task:数据探索与假设检验;制定损益标准;数据驱动业务分析;营销活动设计;建议、评估和优化。
企业分析人员的成长路径:
最后,看你骨骼惊奇,送你一套数据科学家的学习资源:
1. IBM大数据大学(BDU)该平台提供了一些免费的在线学习课程,同时也提供了解决真实数据应用问题的方案。如R,Python,OpenRefine。CDA数据分析师也和BDU达成深度合作,同时CDA系列的第一门课程:《数据挖掘导论》也已经在IBM大数据大学上面正式发布。可以通过传送门感受:https://bigdatauniversity.com.cn/courses/introduction-data-mining/
2. Coursera是最大的在线公开课平台之一,其中有很多都是和数据科学相关。
如:杜克大学的“精通Excel数据分析”;密歇根大学的“大家一起,从0开始学Python”; 约翰霍普金斯大学的R编程。ETC…大家可以自己去挖掘。
3. CDA数据分析师致力于传播优质的教学资源,官网公开SPSS,Python,R等公开视频资源可供免费观看:https://www.cda.cn/shipin.html 未来也会逐渐开放更多的免费资源供大家学习观看。
如果你是一个很有自律性的人类生物,你可以通过参加以上课程和更多开放的资源来get到数据科学相关技能。
当然,资源多有时候也是一种问题,面对如此眼花缭乱的课程和分类,我该如何选择?一个人学习遇到问题无法解决?我需要同行的伴侣一起学习进步?
CDA数据分析师Level I课程,带你从业务数据分析开始,稳扎稳打,带你有组织有纪律的走上你的数据科学家之路!
培训信息
北京海淀&远程(SAS EG):9月24~10月30(8天)
北京朝阳(SPSS):10月29~11月20(8天)
授课安排:现场班6900元,远程班4900元
(1) 授课方式:面授直播两种形式,中文多媒体互动式授课方式
(2) 授课时间:上午9:00-12:00,下午13:30-16:30,16:30-17:00(答疑)
(3) 学习期限:现场与视频结合,长期学习加练习答疑。
报名流程
1. 在线填写报名信息
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20