【每周一本书第2波】Spark大数据分析技术与实战
在大数据背景下,各领域对数据相关服务的需求不断提升,迫切需要一种高效通用的大数据处理引擎。相对于第一代大数据生态系统Hadoop中的MapReduce,Spark是一种基于内存的、分布式的大数据处理引擎,其计算速度更快,更加适合处理具有较多迭代次数的问题;Spark中还提供了丰富的API,使其具有极强的易用性;与此同时,Spark实现了“一栈式”的大数据解决方案,即在Spark内核基础上提出了Spark GraphX、Spark Streaming、Spark MLlib、Spark SQL等组件,使其不仅能够对海量数据进行批处理,同时还具备流式计算、海量数据交互式查询等功能,可以满足包括教育、电信、医疗、金融、电商、政府、智慧城市和安全等诸多领域中的大数据应用需求。
Spark作为下一代大数据处理引擎,经过短短几年的飞跃式发展,正在以燎原之势席卷业界,现已成为大数据产业中的一股中坚力量。本书主要针对大数据技术初学者,着重讲解了Spark内核、Spark GraphX、Spark SQL、Spark Streaming和Spark MLlib的核心概念与理论框架,并提供了相应的示例与解析,是初学者快速入门和学习Spark的不二之选。
【每周一本书】又是一周,CDA数据分析师携手工业出版社将于每周三展开赠书活动,每周给各位读者提供3-5本赠书,希望带动各位读者能借此机会每周充一次电。(注:书籍将于10天内发放到中奖者手中。参与方式见下文)
作者简介
董轶群,吉林大学计算机科学与技术学院博士毕业。曾在吉林大学“符号计算与知识工程”教育部重点实验室从事空间关系建模研究,参与了多个国家自然科学基金重点项目与面上项目的申报与研究工作,并在项目中主要负责空间方向关系建模、空间拓扑关系建模的研究工作。目前作为经管之家(原人大经济论坛)大数据讲师,主讲Spark、Hbase、Scala等大数据核心课程,并从事大数据相关的理论与应用研究工作。重点关注海量数据背景下空间关系建模与智能交通的结合研究,并在国内期刊和国际会议上发表了一系列相关理论的研究成果。
曹正凤,统计学博士,经管之家(原人大经济论坛)大数据中心总工程师,经管之家CDA大数据分析师培训负责人,北京博宇通达科技有限公司技术总监。致力于大数据分析前沿领域研究,主持首发集团智慧交通大数据中心建设项目,基于大数据平台的互联网金融风险监控系统项目,参与国家社科基金项目《基于大数据整合的空气质量测度方法研究》。
赵仁乾,北京邮电大学管理科学与工程硕士,现就职于北京电信规划设计院任高级经济师,从事移动、联通集团及各省分公司市场、业务、财务规划,经济评价及运营咨询。重点研究方向包括离网用户挖掘、市场细分与精准营销、移动网络价值区域分析、潜在价值客户挖掘等。
王安,布本智能首席数据官,北京大学光华管理学院MBA,北京大学商务智能中心专家组成员。专注数据化决策,互联网金融风险管理与精准营销。在数据决策领域拥有十多年的实践经验,曾服务多家大中型银行、保险公司及互联网金融公司。同时也积极参与数据决策教育领域,为北京大学、人民大学、北京航空航天大学、北京理工大学等院校机构提供相关课程和数据教育辅导。
内容提要
Spark作为下一代大数据处理引擎,经过短短几年的飞跃式发展,正在以燎原之势席卷业界,现已成为大数据产业中的一股中坚力量。
本书着重讲解了Spark内核、Spark GraphX、Spark SQL、Spark Streaming和Spark MLlib的核心概念与理论框架,并提供了相应的示例与解析。
全书共分为8章,其中前4章介绍Spark内核,主要包括Spark简介、集群部署、工作原理、核心概念与操作等;后4章分别介绍Spark内核的核心组件,每章系统地介绍Spark的一个组件,并附以相应的案例分析。
参与方式
扫面下方二维码或者点击阅读原文,填写本书吸引你的理由,得票前5名即可获得本书,C君还将在中奖外的人抽取5位赠送CDA网站免费学习会员一周(可享受全部线上会员课程)
(个人信息请认真填写,方便书籍快递发放)
土豪请点击原文链接订购。订购链接:https://item.taobao.com/item.htm?spm=a1z10.5-c.w4002-11062293336.18.2f669dfb8H2yIo&id=557494390108
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20