cda

数字化人才认证

首页 > 行业图谱 >

1234 1/4

【干货】 半监督学习 (下)Label Spreading

【干货】半监督学习(下)Label Spreading
2025-02-05
当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则 ...

【干货】用 半监督学习 方法处理标签(上)Label Propagation

【干货】用半监督学习方法处理标签(上)Label Propagation
2025-02-04
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额外的未标记数据,更好地捕捉数据分布的潜在形状,并在新样本上的泛化能力更强。当我们 ...

 数据挖掘与分析中的机器学习方法

数据挖掘与分析中的机器学习方法
2024-11-15
在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现对未知数据的预测和分析。随着大数据和计算能力的迅速发展,机器学习的应用范围日益广 ...

贝叶斯数据分析的原理、方法及应用场景详解

贝叶斯数据分析的原理、方法及应用场景详解
2024-09-04
贝叶斯数据分析,如同一位经验丰富的导游,带领我们在复杂数据的世界中游走,通过结合已有的先验知识与新观测数据,不断调整和优化我们的预测与推断。贝叶斯定理是这一切的核心,它为我们提供了一个动态调整信念的 ...

机器学习在数据分析中的应用:5个经典案例解析

机器学习在数据分析中的应用:5个经典案例解析
2024-08-31
在当今的数据驱动时代,机器学习已经成为各行业数据分析的重要工具。其广泛应用不仅提升了工作效率,还在多种场景中展现了卓越的智能化潜力。今天,我将通过五个经典案例,详细解析机器学习在金融、医疗、零售 ...
数据挖掘模型与机器学习模型有何异同?
2024-08-05
数据挖掘模型与机器学习模型在实践中有许多共同之处,但也存在一些关键的区别。本文将对这两种模型进行比较,并解释它们之间的异同点。 首先,数据挖掘模型和机器学习模型都是从数据中提取出有用信息的工具。它们都 ...

如何评估数据集的质量并减少数据偏差?

如何评估数据集的质量并减少数据偏差?
2024-03-13
在机器学习和数据分析领域,数据集的质量对于模型的准确性和稳定性至关重要。一个高质量的数据集应具有合适的样本量、代表性良好的样本以及无偏的标签。然而,在实践中,数据集常常存在着各种问题,如数据偏差。本 ...
如何在数据挖掘中应用机器学习算法?
2024-01-15
数据挖掘是一门涉及从大量数据中提取有用信息的技术。而机器学习则是数据挖掘的重要工具之一,通过训练计算机模型来识别和预测模式、关系和趋势。本文将介绍如何在数据挖掘中应用机器学习算法,包括数据准备、特征工 ...

金融行业常用的风险评估模型有哪些?

金融行业常用的风险评估模型有哪些?
2023-10-18
金融行业常用的风险评估模型有多种,这些模型旨在帮助金融机构和投资者评估、管理和控制各种风险。以下是一些常见的金融风险评估模型: VaR(Value at Risk):VaR是一种广泛使用的市场风险评估模型,用 ...
CDA LEVEL III
2023-10-11
一、总则 CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的资格认证,旨在提升用户数字技能,助力企业数字化转型,推动行业数字化发展。「CDA人才 ...

12个案例玩转机器学习【CDA三级认证考试往期实操项目原题】

12个案例玩转机器学习【CDA三级认证考试往期实操项目原题】
2024-08-14
传统模型评估方法与利润最大化评估方法 增益图与利润图 目标类别不平衡的问题 目标类别不平衡的处理方式 传统监督学习方法与非监督学习 ...

如何使用Excel进行聚类分析?

如何使用Excel进行聚类分析?
2023-08-25
聚类分析是一种常用的数据挖掘技术,它可以将相似的数据点分组成簇。这种分析方法在许多领域都有广泛的应用,如市场细分、客户分类、模式识别等。虽然有许多专业的统计软件可用于执行聚类分析,但对于初学者或不具 ...

如何解决数据不完整或缺失的情况?

如何解决数据不完整或缺失的情况?
2023-08-21
在当今数字化时代,数据被视为一种宝贵的资源,对于企业和组织而言,准确、完整的数据是做出明智决策和制定有效战略的基础。然而,由于各种原因,数据可能会出现不完整或缺失的情况。本文将介绍一些解决这一问题的 ...

人工智能岗位需要具备哪些技能?

人工智能岗位需要具备哪些技能?
2023-07-19
随着人工智能的迅猛发展,市场上对于人工智能相关岗位的需求日益增长。从机器学习到自然语言处理,从计算机视觉到深度学习,人工智能领域涵盖广泛而多样的技术和应用。在这个充满机遇和挑战的时代,拥有一系列关键 ...
数据分析与机器学习有何区别?
2023-07-13
在当今数据驱动的世界中,数据分析和机器学习是两个备受瞩目的领域。尽管它们有着一些共同之处,但数据分析和机器学习之间存在明显的区别。本文将详细探讨数据分析和机器学习的定义、目标、方法和应用,并阐明二者之 ...
有哪些常用的机器学习算法?
2023-06-30
机器学习是计算机科学中的一个分支,它利用统计学、人工智能和计算机科学等领域的知识和技术,通过训练模型从数据中提取有用的信息。机器学习算法可以大致分为三类:监督学习、非监督学习和半监督学习。在本文中,我 ...

数据分析的基本流程是什么?

数据分析的基本流程是什么?
2023-06-28
数据分析的基本流程是一个系统性的过程,包括收集数据、清洗数据、探索数据、建立模型、评估结果和进行可视化等步骤。在这篇文章中,我将详细介绍每个步骤以及它们的重要性。 1.数据收集:数据收集是数据分析的 ...
如何有效地分析大量数据?
2023-06-15
在当今的数字时代,大数据已经成为人们日常生活中不可或缺的一部分。然而,要从海量的数据中提取有价值的信息并进行有效的分析是一项复杂而具有挑战性的任务。以下是一些可以帮助您有效分析大量数据的技巧和方法。 ...

SPSS中进行K均值聚类分析,怎么确定分几类比较好?

SPSS中进行K均值聚类分析,怎么确定分几类比较好?
2023-04-19
在进行K均值聚类分析时,如何确定最优的分类数是一个非常重要的问题。一般来说,确定分类数需要考虑数据的特征和研究目的。下面将介绍一些常用的方法来确定最优的分类数。 肘部法(Elbow Method) 肘部 ...

BP神经网络里的训练次数,训练目标,学习速率怎么确定?

BP神经网络里的训练次数,训练目标,学习速率怎么确定?
2023-04-13
BP神经网络是一种常见的人工神经网络模型,用于解决分类、回归和聚类等问题。在BP神经网络中,训练次数、训练目标和学习速率是三个重要的超参数,对模型的性能和训练效率有着至关重要的影响。本文将从理论和实践两 ...
1234 1/4

OK