cda

数字化人才认证

首页 > 行业图谱 >

神经网络中难样本和噪音样本有什么区别?
2023-04-07
在神经网络中,难样本和噪音样本是两个重要的概念,它们在模型训练和预测过程中起着不同的作用。 首先,噪音样本是指在数据集中存在的不符合真实分布的异常、异常值或错误标注的数据样本。这些样本可能会对模型的性 ...
使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?
2023-04-07
当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准确 ...
神经网络的训练中要计算验证集的损失函数吗?
2023-04-07
在神经网络训练过程中,验证集是用于评估模型性能的重要数据集之一。通常情况下,我们会使用验证集来监控模型的训练和调优,并计算验证集的损失函数来评估模型的泛化能力。 在深度学习中,神经网络模型的训练一般通 ...
pytorch中model.eval()会对哪些函数有影响?
2023-04-07
PyTorch是一个广泛使用的深度学习框架,提供了丰富的工具和函数来构建和训练神经网络模型。其中,model.eval()是一个重要的函数,用于将模型转换为评估模式。该函数会影响到模型中的一些关键函数,如前向传 ...
nlp序列标注任务如何处理类别极度不平衡问题?
2023-04-07
自然语言处理(NLP)中的序列标注任务涉及将一系列文本标记为特定类别。 在这种情况下,如果数据集中存在类别不平衡,则可能会影响模型的性能。 对于一个极度不平衡的数据集,即使使用优秀的机器学习算法,也可能会 ...
lstm能同时预测多个变量吗?
2023-04-04
长短期记忆网络(Long Short-Term Memory,LSTM)是一种常用的循环神经网络(Recurrent Neural Network,RNN),主要应用于序列数据的建模和预测。在实际应用中,LSTM 能够同时预测多个变量。 为了更好地理解 LSTM ...
xgboost模型训练时需要对类型特征进行one-hot编码吗?
2023-04-03
XGBoost是一种强大的机器学习算法,广泛应用于数据挖掘和预测建模。在XGBoost模型中,包括许多特征工程技术,例如对类型特征进行编码。在本文中,我们将探讨是否需要对类型特征进行独热编码,并介绍如何使用XGBoost ...
在神经网络中,先进行BatchNorm还是先运行激活函数?
2023-04-03
在神经网络中,BatchNorm(批归一化)和激活函数是两个关键的组成部分,对于它们的顺序,存在不同的观点和实践。本文将从理论和实践两方面探讨这个问题,并提出一个综合考虑的解决方案。 理论分析 BatchNorm旨在通过 ...
用了更多特征,为什么xgboost效果反而变差了?
2023-04-03
XGBoost是一种流行的算法,常用于解决回归问题和分类问题。它通过集成多个决策树来提高模型的精度和泛化能力。尽管有时候添加更多的特征可能会改善模型的性能,但有时候它可能会导致模型的性能反而变差。在本文中, ...
一个神经网络可以有两个损失函数吗?
2023-04-03
神经网络是一种模拟人类神经系统的计算模型,可以自动学习输入和输出之间的关系。在训练神经网络时,通常需要定义一个损失函数来评估模型的性能,并通过调整模型参数来最小化损失函数。但是,有时候我们可能需要考虑 ...
训练神经网络模型时对图片的预处理是否必要?
2023-04-03
在训练神经网络模型时,对输入数据进行预处理是一个非常重要的步骤。特别是当我们处理图片数据时,预处理操作可以帮助我们提高模型的性能和效率。 为什么需要预处理? 首先,让我们考虑一下图片在计算机中是如何表示 ...
为什么训练好的lstm模型每次输出的结果不一样?
2023-04-03
LSTM(Long Short-Term Memory)模型是一种特殊的循环神经网络(Recurrent Neural Network,RNN),其能够处理序列数据并在某种程度上解决梯度消失和梯度爆炸问题。训练好的LSTM模型在使用时,每次输出的结果可能会 ...
神经网络loss值很小,但实际预测结果差很大,有什么原因?
2023-04-03
神经网络是一种模拟人类神经系统运作的计算模型,可以完成很多复杂的任务,如图像识别、语音识别和自然语言处理等。在训练神经网络时,最重要的指标是损失函数(loss function),用于衡量模型预测结果与真实值之间 ...
神经网络训练结果不稳定可能是什么原因?有什么解决办法?
2023-04-03
神经网络是一种强大的机器学习模型,可用于各种任务。然而,在训练神经网络时,我们可能会遇到结果不稳定的情况,这意味着在同样的数据集和超参数下,神经网络的性能可能会有很大的差异。本文将探讨神经网络训练结果 ...
神经网络的样本为何要增加噪声?
2023-04-03
神经网络是一种模仿生物神经系统运作的计算模型,它可以通过学习和调整自身参数来解决各种复杂问题。在神经网络中,样本是非常重要的,因为它们是神经网络训练的基础。实际上,在神经网络的训练过程中,加入噪声是一 ...
请问rnn和lstm中batchsize和timestep的区别是什么?
2023-03-31
RNN和LSTM是常用的深度学习模型,用于处理序列数据。其中,batch size和time step是两个重要的超参数,对模型的训练和性能有着重要的影响。在本文中,我们将探讨RNN和LSTM中batch size和time step的区别以及它们对模 ...
卷积神经网络中,那个卷积输出层的通道数(深度)的计算?
2023-03-31
在卷积神经网络中,卷积输出层的通道数(也称为深度或特征图数量)是非常重要的超参数之一。该参数决定了模型最终的学习能力和效果,并且需要根据具体任务来进行调整。 通常情况下,卷积神经网络由多个卷积层和池化 ...
卷积神经网络可以没有池化层吗?
2023-03-31
卷积神经网络(Convolutional Neural Network,CNN)是一种常用的深度学习算法,广泛应用于计算机视觉和自然语言处理等领域。池化层(Pooling Layer)是CNN中常用的一种层次结构,可以降低数据的空间维度,提高模型 ...
xgboost是用二阶泰勒展开的优势在哪?
2023-03-31
XGBoost(eXtreme Gradient Boosting)是一种高效而强大的机器学习算法,它在大规模数据集上的性能表现非常出色。其中,使用二阶泰勒展开是XGBoost的重要优势之一,下面将详细介绍。 首先,我们来了解一下什么是泰勒 ...
如何将卷积神经网络应用在一维时间序列数据上?
2023-03-30
卷积神经网络是一种强大的深度学习模型,通常用于处理图像数据,但它也可以应用于一维时间序列数据。在本文中,我们将探讨如何将卷积神经网络应用于一维时间序列数据,并介绍一些常见的技术和方法。 什么是一维时间 ...

OK