cda

数字化人才认证

首页 > 行业图谱 >

CNN神经网络和BP神经网络训练准确率很快就收敛为1,一般会是什么原因?
2023-04-11
CNN神经网络和BP神经网络都是深度学习中常用的神经网络模型。在训练这些模型时,我们通常会关注训练的准确率,即模型对于训练数据的预测精度。然而,有时候我们会发现,在训练一段时间后,模型的准确率会很快地收敛 ...
卷积神经网络中归一化层的作用?
2023-04-11
卷积神经网络 (Convolutional Neural Network, CNN) 是一种深度学习模型,常用于计算机视觉任务。除了常见的卷积层、池化层和全连接层,CNN 中还有一个重要的组件就是归一化层 (Normalization Layer)。在本文中,我 ...
卷积神经网络为什么要加一层降采样层呢?
2023-04-10
卷积神经网络(Convolutional Neural Network,CNN)是一种用于图像识别、语音识别等领域的深度学习模型。在CNN中,卷积层和池化层是两个最为常用的层次。池化层也被称为降采样层,它的主要作用是将输入数据的空间维 ...
CNN卷积神经网络的全连接层为什么要有一层1024神经元?
2023-04-10
卷积神经网络(CNN)是一种在计算机视觉和自然语言处理等领域广泛应用的深度学习模型。在CNN中,全连接层是网络的最后一层,通常用于将卷积层和池化层输出的特征向量转换为分类或回归输出。 在许多CNN架构中,全连接 ...
卷积神经网络反向传播最清晰的解释?
2023-04-10
卷积神经网络(Convolutional Neural Network,简称CNN)是一种常用的深度学习模型,可以处理图像、语音和自然语言等高维数据。CNN中的反向传播算法是训练模型的关键步骤之一,本文将对CNN反向传播算法进行详细解释 ...
卷积神经网络中,步长为2的卷积层可以代替池化层吗?
2023-04-10
卷积神经网络(Convolutional Neural Network, CNN)是一种基于卷积运算的深度学习模型,广泛应用于图像识别、语音识别和自然语言处理等领域。在CNN中,池化层(Pooling layer)通常用于减小特征图的尺寸和参数数量,并 ...
卷积神经网络中的1*1卷积究竟有什么用?
2023-04-10
卷积神经网络(CNN)是一种广泛用于图像分类、目标检测和图像分割等计算机视觉任务的深度学习模型。在这些任务中,卷积层是CNN的核心组成部分,其中卷积操作是一种有效的特征提取和空间信息建模技术。在卷积层中,1* ...
LSTM 中为什么要用 tanh 激活函数?tanh 激活函数的作用及优势在哪里?
2023-04-07
LSTM是一种常用的循环神经网络架构,它可以有效地解决传统RNN中长序列训练过程中产生的梯度消失和梯度爆炸问题。LSTM通过使用门控机制来控制信息的流动,其中tanh激活函数扮演了重要角色。 tanh激活函数是一种非线性 ...
PyTorch中的扩张卷积(空洞卷积)是怎么实现的?
2023-04-07
扩张卷积,也被称为空洞卷积,是一种在深度学习中常用的卷积操作,可以有效地增加模型感受野和步幅,同时减少参数数量。 在PyTorch中,扩张卷积是通过使用nn.Conv2d()函数来实现的。该函数有四个必填参数:in_channe ...
当tensorflow模型超过单张显卡显存的时候,应该怎么拆分到多个GPU上运行?
2023-04-07
在深度学习模型训练过程中,往往需要处理大量的数据和参数,进而需要较大的计算资源支持。然而,单张显卡的显存有限,当模型过于复杂或者数据集过于庞大时,会导致无法将整个模型同时加载到显存中进行训练。为了充分 ...
相比Tensorflow2和PyTorch,TensorFlow1.x版本有什么弊端?
2023-04-07
TensorFlow 1.x版本是Google发布的第一个深度学习框架,它在2015年推出后,迅速成为了业界最受欢迎的深度学习框架之一。然而,TensorFlow 1.x版本也存在一些弊端,这些弊端在TensorFlow 2.0和PyTorch等新一代深度学 ...
如何进行多变量LSTM时间序列预测未来一周的数据?
2023-04-07
随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多变 ...
神经网络反向传播算法本质是在解决什么问题?
2023-04-07
神经网络反向传播算法(Backpropagation)是一种用于训练神经网络的算法,其本质是通过最小化损失函数来寻找权重和偏置参数的最优值。在深度学习中,尤其是在计算机视觉、自然语言处理和语音识别等领域中,神经网络 ...
为什么 A40 GPU Pytorch 无法并行训练?
2023-04-07
在过去的几年中,深度学习领域取得了显著的发展。为了更好地利用硬件资源来训练复杂的深度神经网络,大量的工作已经被投入到并行化训练算法和框架的研究中。然而,一些GPU在使用PyTorch等库时可能会遇到无法有效并行 ...
pytorch里如何使用logger保存训练参数日志?
2023-04-07
PyTorch 是一种广泛使用的深度学习框架,它提供了许多工具来帮助用户跟踪和记录他们的训练过程。其中一个非常有用的工具是日志记录器(logger),它可以帮助用户保存训练参数日志,以便随时追踪和分析模型性能。 在 ...
TensorFlow和spark的ml以及python的scikit-learn 三者的区别是什么?
2023-04-07
TensorFlow, Spark的ML和Python的Scikit-learn是三种不同的机器学习工具,它们各自有其独特的特点和优势。以下是它们之间的主要区别。 TensorFlow TensorFlow是由Google开发的一个基于图形计算的深度学习框架。它 ...
神经网络的训练中要计算验证集的损失函数吗?
2023-04-07
在神经网络训练过程中,验证集是用于评估模型性能的重要数据集之一。通常情况下,我们会使用验证集来监控模型的训练和调优,并计算验证集的损失函数来评估模型的泛化能力。 在深度学习中,神经网络模型的训练一般通 ...
Taichi 和 PyTorch 有哪些相似和不同?
2023-04-07
Taichi 和 PyTorch 都是流行的机器学习框架,它们在某些方面类似,在其他方面则有所不同。 相似之处: 动态计算图: Taichi 和 PyTorch 都使用动态计算图作为其核心组件。这意味着模型可以根据输入数据而变化,而不 ...
pytorch中model.eval()会对哪些函数有影响?
2023-04-07
PyTorch是一个广泛使用的深度学习框架,提供了丰富的工具和函数来构建和训练神经网络模型。其中,model.eval()是一个重要的函数,用于将模型转换为评估模式。该函数会影响到模型中的一些关键函数,如前向传 ...
Pytorch的nn.CrossEntropyLoss()的weight怎么使用?
2023-04-07
Pytorch是深度学习领域中广泛使用的一个深度学习框架,它提供了丰富的损失函数用于模型训练。其中,nn.CrossEntropyLoss()是用于多分类问题的常用损失函数之一。它可以结合权重参数对样本进行加权处理,以应对数据集 ...

OK