cda

数字化人才认证

首页 > 行业图谱 >

pytorch 中pkl和pth的区别?
2023-04-07
PyTorch是一个流行的深度学习框架,它提供了许多工具来帮助研究人员和开发人员构建和训练神经网络。在PyTorch中,我们可以使用两种不同的文件扩展名将模型保存到磁盘上:.pkl和.pth。这两个扩展名都用于保存PyTorch ...
python训练的pytorch模型,如何使用c 调用并使用TensorRT加速?
2023-04-07
PyTorch 是一种非常流行的深度学习框架,但是它不太适合在嵌入式系统和实时部署上使用,因为它在计算上的速度相对较慢。为了加速 PyTorch 模型的推理,可以使用 NVIDIA 的 TensorRT 库。TensorRT 旨在优化深度学习模 ...
ONNX转Pytorch有什么好的方法吗?
2023-04-07
ONNX(Open Neural Network Exchange)是一种跨平台、开放源代码的深度学习模型交换格式。它可以用于在不同的深度学习框架之间转移模型,其中包括PyTorch。在本文中,我们将探讨如何将ONNX模型转换为PyTorch模型的一 ...
onnx解决不支持的pytorch算子?
2023-04-07
ONNX(Open Neural Network Exchange)是一种开放的、跨平台的深度学习模型交换格式,它的目的是使得深度学习模型在不同的框架之间进行转换和移植变得更加容易。PyTorch 是一个广泛使用的深度学习框架之一,但是由于 ...
文科生怎么学数据分析师?
2023-04-07
数据分析师是一个非常有前途的职业,它需要具备数据收集、处理、分析、可视化和报告的能力,以及对业务场景和问题的理解和解决。文科生想要成为数据分析师,可能会面临一些挑战,比如缺乏数学和统计学的基础, ...
LSTM的cell个数是如何设置?
2023-04-04
LSTM(长短时记忆网络)是一种常用的循环神经网络(RNN)结构,具有较强的序列建模能力。在使用LSTM进行训练时,其中一个重要的超参数是LSTM中cell(记忆单元)的个数,也称为隐藏节点数。在本文中,我们将探讨如何 ...
tensorflow中的seq2seq例子为什么需要bucket?
2023-04-03
TensorFlow中的Seq2Seq(Sequence-to-Sequence)模型是一种非常流行的深度学习模型,用于处理序列到序列(sequence-to-sequence)任务,例如自然语言翻译,语音识别和对话系统等。在Seq2Seq模型中,输入序列经过编码 ...
TensorFlow 相较于 Caffe 的优势在哪?
2023-04-03
TensorFlow和Caffe都是深度学习领域中常用的框架之一,它们都可以用来构建深度神经网络模型,训练和部署模型。但是,两者在实现和应用上存在一些区别。在本文中,我们将重点比较TensorFlow和Caffe的优劣,并介绍两种 ...
caffe中的deconvolution和upsample的区别?
2023-04-03
在深度学习中,deconvolution和upsample是两种常见的图像处理技术,它们都可以用于将输入图像或特征图扩大到更高分辨率。但是,尽管这两种技术表面上看起来相似,它们之间有着重要的区别。 一、deconvolution Deconv ...
怎么用pytorch对训练集数据做十折交叉验证?
2023-04-03
PyTorch是一种流行的深度学习框架,它提供了许多方便的工具来处理数据集并构建模型。在深度学习中,我们通常需要对训练数据进行交叉验证,以评估模型的性能和确定超参数的最佳值。本文将介绍如何使用PyTorch实现10折 ...
为什么Pytorch中的Tensor只有四位小数呢?
2023-04-03
PyTorch是一种广泛使用的深度学习框架,它支持各种张量操作和模型构建。在PyTorch中,张量(Tensor)是一种多维数组,是存储和处理数据的核心结构。然而,一些用户可能会注意到,在PyTorch中创建的张量默认只显示四 ...
为什么CNN中的注意力机制都是加在提取特征的神经网络中?
2023-04-03
在深度学习中,卷积神经网络(Convolutional Neural Network,CNN)是一种可以自动从原始数据中学习特征的强大工具。然而,在某些情况下,我们需要更加准确地捕获输入数据中的关键信息,以便更好地完成任务,比如分 ...
图像识别实现 cnn lstm(Crnn),详见描述?
2023-04-03
卷积神经网络(CNN)和长短时记忆网络(LSTM)是两种广泛应用于图像识别和自然语言处理领域的深度学习模型。一种结合了这两种模型的网络称为卷积循环神经网络(CRNN)。本文将介绍CRNN的基本原理和实现过程。 一、CR ...
什么是二值神经网络,它的前景如何?
2023-04-03
二值神经网络(Binarized Neural Networks,简称BNN)是一种使用二进制权重和激活函数来进行计算的神经网络模型。相较于传统的浮点数神经网络,它大大减少了模型的存储需求和计算复杂度。 在BNN模型中,每个权重和激 ...
深度神经网络中的全连接层的缺点与优点是什么?
2023-04-03
全连接层是深度神经网络中的一种常见的层类型,也被称为密集层或者全连接层。在全连接层中,每个神经元都与前一层中的所有神经元相连。全连接层的优点包括它的灵活性和表达能力,但其缺点包括参数量大和容易过拟合等 ...
如何评价球面卷积神经网络(Spherical CNNs)?
2023-03-31
球面卷积神经网络(Spherical CNNs)是一种用于处理球形数据的深度学习模型,在近年来获得了不少关注。它可以被应用在诸如全球气候预测、天体物理学、计算机图形学和分子结构等领域。 首先,球面卷积神经网络能够有 ...
请问rnn和lstm中batchsize和timestep的区别是什么?
2023-03-31
RNN和LSTM是常用的深度学习模型,用于处理序列数据。其中,batch size和time step是两个重要的超参数,对模型的训练和性能有着重要的影响。在本文中,我们将探讨RNN和LSTM中batch size和time step的区别以及它们对模 ...

一文读懂企业数字化转型能力框架

一文读懂企业数字化转型能力框架
2023-03-31
数字化转型究竟是什么? 首先我们还是摘录下百度词条上对数字化转型的一个简单说明如下: 数字化转型是建立在数字化转换和数字化升级基础上, 进一步触及公司核心业务,以新建一种商业模式为目标的 ...

一文读懂企业数字化转型能力框架

一文读懂企业数字化转型能力框架
2023-03-31
数字化转型究竟是什么? 首先我们还是摘录下百度词条上对数字化转型的一个简单说明如下: 数字化转型是建立在数字化转换和数字化升级基础上, 进一步触及公司核心业务,以新建一种商业模式为目标的高层次转型。 ...
卷积神经网络中卷积核是如何学习到特征的?
2023-03-31
卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,用于图像处理、语音识别等领域。卷积核(Convolutional Kernel)是CNN中的一个核心概念,它能够学习到图像中的特征,并将这些特征映射到下一层。 ...

OK