cda

数字化人才认证

首页 > 行业图谱 >

123 2/3
BP神经网络里的训练次数,训练目标,学习速率怎么确定?
2023-04-13
BP神经网络是一种常见的人工神经网络模型,用于解决分类、回归和聚类等问题。在BP神经网络中,训练次数、训练目标和学习速率是三个重要的超参数,对模型的性能和训练效率有着至关重要的影响。本文将从理论和实践两方 ...
LSTM的一个batch到底是怎么进入神经网络的?
2023-04-12
LSTM(长短期记忆)是一种常用的循环神经网络模型,广泛应用于自然语言处理、语音识别、时间序列预测等领域。在使用LSTM模型时,输入数据通常按照batch方式加载到模型中进行训练。下面将详细介绍一个batch如何进入LS ...
pytorch 如何实现梯度累积?
2023-04-11
PyTorch是一个非常流行的深度学习框架,它提供了一种直观且易于使用的方法来构建、训练和部署神经网络模型。在深度学习中,梯度下降法是最基本的优化算法之一,而梯度累积则是一种可以提高梯度下降的效果的技术。在 ...
CNN神经网络和BP神经网络训练准确率很快就收敛为1,一般会是什么原因?
2023-04-11
CNN神经网络和BP神经网络都是深度学习中常用的神经网络模型。在训练这些模型时,我们通常会关注训练的准确率,即模型对于训练数据的预测精度。然而,有时候我们会发现,在训练一段时间后,模型的准确率会很快地收敛 ...
怎么用神经网络建立预测模型?
2023-04-10
神经网络是一种能够建立预测模型的强大工具,它可以通过对数据的学习和分析来预测未来事件的发生情况。在本文中,我们将探讨如何使用神经网络来建立预测模型,从而提高我们制定决策的准确性和效率。 收集数据 首先 ...
既然单层神经网络已经可以近似任何函数,为什么还要多层神经网络呢?
2023-04-10
单层神经网络是一种简单的神经网络模型,由一个输入层和一个输出层组成。尽管它们可以用于某些简单的任务,但对于更复杂的问题,多层神经网络通常比单层神经网络具有更好的表现力。 首先,虽然单层神经网络可以近似 ...
GRU和LSTM在各种使用场景应该如何选择?
2023-04-10
在自然语言处理领域中,循环神经网络(RNN)是一种被广泛使用的模型。其中,长短期记忆网络(LSTM)和门控循环单元(GRU)是两种流行的变体。这两种模型在各种应用场景中都有所表现,但它们的优点和缺点也不尽相同。 ...
请问pycharm运行程序出现Using tensorflow backend是怎么回事?
2023-04-10
当你在PyCharm中运行一个使用TensorFlow的Python程序时,有时会看到一条消息"Using TensorFlow backend"。这是因为在程序中使用了Keras库,而Keras默认使用TensorFlow作为后端引擎。这条消息实际上只是告诉你当前的 ...
如何用BP神经网络做时间序列预测?
2023-04-10
BP神经网络是一种常见的人工神经网络,可以用于时间序列预测。时间序列预测是指根据历史数据对未来的趋势进行预测,这在商业、金融和天气预报等领域非常有用。在本文中,我将介绍如何使用BP神经网络进行时间序列预测 ...
相比Tensorflow2和PyTorch,TensorFlow1.x版本有什么弊端?
2023-04-07
TensorFlow 1.x版本是Google发布的第一个深度学习框架,它在2015年推出后,迅速成为了业界最受欢迎的深度学习框架之一。然而,TensorFlow 1.x版本也存在一些弊端,这些弊端在TensorFlow 2.0和PyTorch等新一代深度学 ...
神经网络的训练中要计算验证集的损失函数吗?
2023-04-07
在神经网络训练过程中,验证集是用于评估模型性能的重要数据集之一。通常情况下,我们会使用验证集来监控模型的训练和调优,并计算验证集的损失函数来评估模型的泛化能力。 在深度学习中,神经网络模型的训练一般通 ...
如何将卡尔曼滤波与神经网络进行结合??
2023-04-07
卡尔曼滤波和神经网络是两种不同的模型,卡尔曼滤波主要用于估计状态变量的值,而神经网络则是一种强大的模式识别工具。然而,将它们结合起来可以利用它们各自的优点,并提高预测、估计和控制的准确性。 在开始讨论 ...
pytorch中model.eval()会对哪些函数有影响?
2023-04-07
PyTorch是一个广泛使用的深度学习框架,提供了丰富的工具和函数来构建和训练神经网络模型。其中,model.eval()是一个重要的函数,用于将模型转换为评估模式。该函数会影响到模型中的一些关键函数,如前向传 ...
lstm做时间序列预测时间序列长度应该怎么设置?
2023-04-06
LSTM(Long Short-Term Memory)是一种常用于时间序列预测的神经网络模型。在使用LSTM进行时间序列预测时,要考虑到输入序列和输出序列的长度问题。因为LSTM是一种逐步处理序列数据的模型,输入序列的长度会直接影响 ...
TensorFlow 相较于 Caffe 的优势在哪?
2023-04-03
TensorFlow和Caffe都是深度学习领域中常用的框架之一,它们都可以用来构建深度神经网络模型,训练和部署模型。但是,两者在实现和应用上存在一些区别。在本文中,我们将重点比较TensorFlow和Caffe的优劣,并介绍两种 ...
神经网络解偏微分方程的原理是什么?
2023-04-03
神经网络是一种强大的机器学习工具,能够用于许多不同的应用程序,包括解决偏微分方程。在过去几年中,人们已经开始探索使用神经网络来解决偏微分方程的问题。这是因为神经网络有很好的表示能力,并且可以使用反向传 ...
什么是二值神经网络,它的前景如何?
2023-04-03
二值神经网络(Binarized Neural Networks,简称BNN)是一种使用二进制权重和激活函数来进行计算的神经网络模型。相较于传统的浮点数神经网络,它大大减少了模型的存储需求和计算复杂度。 在BNN模型中,每个权重和激 ...
如何用神经网络进行时间序列预测?
2023-03-31
神经网络在时间序列数据预测中具有广泛的应用,它可以通过学习时间序列数据的结构、规律和趋势来进行预测。本文将介绍如何利用神经网络进行时间序列预测。 时间序列数据 时间序列是一组按照时间顺序排列的数据点, ...
脉冲神经网络和非脉冲神经网络各有什么优缺点?
2023-03-31
脉冲神经网络和非脉冲神经网络是两种常见的神经网络模型。这两种模型各有优缺点,下面将详细介绍。 脉冲神经网络(Spiking Neural Network,SNN)是一种生物灵感网络,其最基本的功能单元是脉冲神经元。在SNN中,神 ...
深度学习与神经网络有什么区别?
2023-03-29
深度学习和神经网络是人工智能领域中的两个重要概念,它们在很多方面有着相似之处,但也存在一些区别。本文将从定义、结构、应用等方面来探讨深度学习与神经网络的区别。 定义 深度学习是一种基于人工神经网络的机 ...
123 2/3

OK