cda

数字化人才认证

首页 > 行业图谱 >

如何通过数据分析了解人口分布和特征
2024-03-27
随着数据科学的迅猛发展和大数据时代的到来,通过数据分析可以为我们提供深入了解人口分布和特征的新途径。人口分布和特征是社会研究中的重要方面,了解人口的数量、结构、分布以及相关特征对于制定政策、规划城市 ...
如何在大数据集中找到最相关的特征
2023-12-27
在大数据时代,我们经常面临处理庞大数据集的挑战。对于给定的数据集,了解哪些特征与我们感兴趣的目标变量最相关是至关重要的。本文将介绍一些常用的方法和技术,帮助我们在大数据集中找到最相关的特征。 特征选择 ...
竞赛中常见的特征工程技巧有哪些?
2023-08-15
特征工程是机器学习和数据挖掘领域中的关键步骤之一。它涉及对原始数据进行转换、选择和创建特征,以使其更适合用于机器学习算法的训练和预测。在竞赛中,精心设计的特征工程技巧可以显著提高模型的性能。以下是常见 ...
机器学习中的特征选择方法有哪些?
2023-08-15
特征选择在机器学习中是一个重要的预处理步骤,它可以用于降低维度、减少冗余信息和改善模型性能。在本文中,我们将介绍一些常见的特征选择方法。 过滤式特征选择(Filter-Based Feature Selection):这种方法通过 ...
如何有效地筛选和选择特征变量?
2023-08-02
在机器学习和统计建模中,特征变量的选择是构建高效模型的关键步骤之一。通过适当的特征选择,我们能够降低模型复杂度、提高预测准确性,并且更好地理解数据特征。本文将介绍一些有效的方法来筛选和选择特征变量,以 ...
哪些产品特征对销售额影响最大?
2023-07-19
在竞争激烈的市场中,产品特征对于销售额的影响至关重要。不同的产品特征可以吸引消费者的注意并促使他们做出购买决策。本文将讨论几个影响销售额最大的产品特征,并解释它们如何影响消费者购买行为。 第一段:外观 ...
如何对数据进行特征工程?
2023-06-15
特征工程是机器学习中至关重要的一步,它是将原始数据转换为机器学习算法可以使用的特征向量的过程。在本文中,我们将探讨如何对数据进行特征工程。 数据清洗 在进行特征工程之前,首先需要对原始数据进行清洗。这 ...
神经网络的concat为什么可以实现特征融合?
2023-04-12
神经网络的concat操作是一种常见的特征融合方法,它能够将不同层次或来源的特征信息结合起来,从而提高模型的性能和表现。在这篇文章中,我们将探讨concat操作的原理和应用,并解释为什么它能够实现特征融合。 首先 ...
如何计算决策树的各特征重要程度?
2023-04-07
决策树是一种常用的机器学习算法,它可以对数据进行分类和预测。在决策树中,特征(或属性)重要性是指每个特征对模型准确性的贡献程度。因此,了解如何计算特征重要性是非常有用的,可以帮助我们选择最相关的特征, ...
深度学习卷积神经网络提取的特征是什么?
2023-04-07
深度学习卷积神经网络(CNN)是一种强大的机器学习算法,已经被广泛应用于计算机视觉、语音识别和自然语言处理等领域。CNN在图像分类和目标检测等任务中表现出色,其中最重要的原因就是其能够从原始像素数据中提取出高 ...
xgboost模型训练时需要对类型特征进行one-hot编码吗?
2023-04-03
XGBoost是一种强大的机器学习算法,广泛应用于数据挖掘和预测建模。在XGBoost模型中,包括许多特征工程技术,例如对类型特征进行编码。在本文中,我们将探讨是否需要对类型特征进行独热编码,并介绍如何使用XGBoost ...
用了更多特征,为什么xgboost效果反而变差了?
2023-04-03
XGBoost是一种流行的算法,常用于解决回归问题和分类问题。它通过集成多个决策树来提高模型的精度和泛化能力。尽管有时候添加更多的特征可能会改善模型的性能,但有时候它可能会导致模型的性能反而变差。在本文中, ...
为什么CNN中的注意力机制都是加在提取特征的神经网络中?
2023-04-03
在深度学习中,卷积神经网络(Convolutional Neural Network,CNN)是一种可以自动从原始数据中学习特征的强大工具。然而,在某些情况下,我们需要更加准确地捕获输入数据中的关键信息,以便更好地完成任务,比如分 ...
卷积神经网络中卷积核是如何学习到特征的?
2023-03-31
卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,用于图像处理、语音识别等领域。卷积核(Convolutional Kernel)是CNN中的一个核心概念,它能够学习到图像中的特征,并将这些特征映射到下一层。 ...
卷积神经网络提取图像特征时具有旋转不变性吗?
2023-03-22
卷积神经网络(Convolutional Neural Network,CNN)是一种非常强大的图像处理和分类工具。在许多实际应用中,我们需要对图像进行旋转、缩放、平移等操作,并期望神经网络能够对这些变化保持不变性。本文将探讨卷积 ...
如何理解神经网络中通过add的方式融合特征
2023-03-15
神经网络是一种模拟人脑的计算模型,具有自主学习和自我调整的能力。在神经网络中,融合特征的方式有很多种,其中通过add的方式进行特征融合是比较常见的方法。 在神经网络中,每层都会提取出输入数据的一组特征,这 ...

基于六度分隔理论、PageRank等的人工风控 特征 提取框架

基于六度分隔理论、PageRank等的人工风控特征提取框架
2022-04-25
作者:小伍哥 来源:小伍哥聊风控 关于图的风控应用,之前的很多文章都是基于算法的,今天分享一篇基于图进行人工特征提取的欺诈检测文章,这样大部分人都能应用上了,其中的特征提取方法和思想,值得我 ...
一个成功的数据科学家的5个特征
2022-02-21
我最近写了一篇题为数据科学家、数据工程师和其他数据职业的文章,解释说,在这篇文章中,我尽了最大努力简明扼要地定义和区分了五种流行的数据相关职业。在那篇文章中,每一个职业都得到了非常高水平的单句 ...

Pandas/Sklearn进行机器学习之 特征 筛选,有效提升模型性能

Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能
2021-11-22
作者:俊欣 来源:关于数据分析与可视化 今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征 ...
成功实施大数据战略的企业有哪些主要特征
2018-06-09
成功实施大数据战略的企业有哪些主要特征 要想成为一家以信息为中心的企业,并在激烈的市场竞争中保持领先优势,仅仅只是收集了大量的数据显然是不够的。因此,那些成功地实施了大数据战略的企业都具备哪些主要 ...

OK