大数据落地进行时 从概念化走向价值化_数据分析师考试
过去几年大数据技术很火,经历几年时间的“酝酿”,我们可以看到今天的大数据已经从过去概念阶段逐步走向落地——众多的行业企业开始意识并且开始尝试大数据技术,但是实际上现在的大数据应用还存在争议有观点认为大数据虽然很火但它的实际运用、价值创造方面还有待于观察和发掘。那么,经历几年时间的发展大数据如今的现状究竟是怎样的?在近日召开的2015 SAS中国用户大会暨商业分析领袖峰会(以下简称峰会)上IT168记者有幸采访了SAS公司执行副总裁兼首席营销官Jim Davis、SAS公司大中华区总裁吴辅世、广发银行信用卡中心首席风险官王玉海等行业服务商以及用户听一听他们是如何看待大数据的价值、落地、应用现状的。
服务商、行业用户眼中的大数据
提到大数据,业界有观点称大数据现状是“关注的比投资的多、投资的比做得多、做的比懂得多、真正的懂得人比较少,懂得比赚的多”。在这样的一个现状下,作为大数据服务商如何来看待?对于此,SAS公司执行副总裁兼首席营销官Jim Davis认为,大数据已经开始应用,利用数据可以为企业带来非常大好的好处,企业应该把数据视为一个重要的企业资产跟企业的人员、人才、客户和设备都一样重要,它不仅仅是一个副产品应该高度重视这样的数据资产。现在处于我们处于数据爆炸的时代,各个行业企业以及机构没有选择,必须通过数据做出决定支持自身发展。
SAS公司大中华区总裁吴辅世认为,大数据走到落地实践阶段是必然的趋势,虽然全球都在萌芽阶段,但是发展是很正面积极。从技术层面来看,技术正在越来越成熟比如Hadoop存储过去只是概念而现在已经应用于很多的领域。所以,大数据落地在一步步的往前发展是正面的积极发展。
作为服务商对于大数据的看法是大数据正在逐步发展、积极落地,那么从行业用户的角度来看,他们又是如何来看待大数据的?对于此,广发银行信用卡中心首席风险官王玉海对于大数据持有不同的态度,他认为大数据在不同的行业应用不同但在金融行业大数据呈现“雷声大雨点小,有客观原因也有主观原因”。主观上金融业的企业文化没有改变过来,用产业兴衰的所谓的基因论来衡量,当上一波的产业浪潮获胜者巩固以后,不断地固化他的企业文化、思维模式、运营架构,这些基因不代表在下一波产业浪潮中能获胜,所以很多银行是安于现有组织架构和组织流程,对那些新生的创新性的事物有一个文化上天然的排斥感,所以,当我们说金融业应用大数据应该是最好的领域时,其实金融行业的小数据还没用好,文化上有一个不接受的排斥。
在成本和管理因素方面,不管从人力还是硬件,从数据结构还是数据源还都是传统意义上的这种模式。尤其是大数据要基于生命周期的数据管理方式,其实在目前金融业还是割裂的,碎片化的管理。尤其传统分析方法已经不适合大数据碎片式、非结构性的数据,像影像、图片、音频等非常好,但是一旦接触它很棘手,怎么样把非结构性的传统方法用于大数据管理?实际上从软件、硬件、基础设施上来看都没有完全成熟,成本更高了。现在传统银行每一个部门有它的成本控制,他不敢去冒险投入很多的财力、人力来开发而不能肯定它的回报,这是管理和成本的制约。
在技术方面,传统的数据库都是事物型的而不是分析型的数据库,IT人员习惯于从原数据抓过来,从文本文件变成一个数据仓库,但是分析是另外一个事情,他把分析和仓库割裂起来,由于技术原因和过去的管理机构,需要更大的储存和更强的技术能力,也就是云计算和Hadoop。
在人才方面也是一大挑战。大数据应用不仅仅是需要一些计算机行业的、数学行业的人才,它更需要的是对传统的金融领域和未来发展更了解、更熟悉,同时又有能力作数据搭建储存和分析,这些人才目前在市面上是非常稀缺,虽然每年大量的学统计和金融的大学生,但是他们是割裂的很多人是偏才,所以现在对银行来言,可以轻易给这些有这种能力的员工一百万到两百万的工资,但是仍然不好找。
大数据如何落地?
来自服务商、行业用户对于大数据的现状分析以后,我们可以看出大数据已经从概念开始逐步走向落地应用阶段,那么,对于行业的企业而言该如何借助大数据创造价值?对于此,Jim Davis指出,大数据带给企业的好处要满足四个条件:第一,基础设施;第二,相关人员或者人才,他们需要来理解并且帮助机构以及企业根据事实做出决策,他们需要具备相关的技能来进行数据和分析;第三,相关过程;第三,强有力的文化,在这个文化中愿意变革现在数据和分析不是可有可无的选择,任何企业和机构如果想要继续在前行道路上取得成功必须拥抱数据和数据分析。
王玉海指出,大数据应用的挑战并不等于悲观,虽然金融业应用大数据存在阻力和挑战,但是应用逐渐大数据化是需要一个过程。
SAS推动行业大数据落地
在推进行业企业大数据落的地进程过程中,作为领先的大数据服务商——SAS能够为行业企业提供什么样的服务或者产品支撑?吴辅世指出,过去几年 SAS为中国行业企业提供了优质的产品以及服务为助力大数据落地,比如我们的联想、华为等。正是借助SAS的大数据优质的产品,SAS中国成为在亚太区是以成长速度最快的国家和市场,目前,SAS重点服务四大行业领域的企业:第一,金融服务银行、保险企业;第二,制造业;第三,政府市场;第四,电信市场,除此之外未来在中国市场上SAS还要继续推广发展如医疗等行业,加速大数据落地步伐,促进企业健康成长。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20