上周从买了两本书《谁说菜鸟不会数据分析》和《大数据时代》,学习过程中想把书本内容通过总结、理解、实践、内化掌握来变成自己的东西,把握好学习的节奏,坚持就好。
初级阶段我更多的是来转述前辈们总结出的东西,但自己若有实践中的体会也会写入其中(自己的体会粗体标出)。本来就是记录菜鸟成长过程,所以内容对行家来说太小儿科,对新手入门来说或许会有些帮助。
以下开始是对《谁说菜鸟不会分析数据》一书的学习总结,第一章:数据分析那些事儿。
1.何谓数据分析?
用适当的统计分析方法对收集来的大量数据进行详细研究和概括总结,以求最大化地发挥数据的作用,提取有用信息和形成结论,这一过程叫做数据分析。
2.数据分析的三大作用:现状分析、原因分析、预测分析。
1.明确分析思路:
首先要明确分析目的:菜鸟与数据分析师的区别就在于菜鸟做分析时目的不明确,从而导致分析过程非常盲目。这点有比较深的体会,在公司里做过关于搜索和新手的产品数据分析,自己对分析目的没考虑太多,靠的是前人留下的上期数据分析结果,倘若让我从零开始做,估计会很盲目。
然后确定分析思路:梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。
最后还要确保分析框架的体系化,使分析结果具有说服力:营销方面的理论模型有4P、用户使用行为、STP理论、SWOT等;管理方面的理论模型有PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART等。在上周一个汇报上使用了SWOT分析方法,对这些营销或管理的模型还都很陌生。
2.数据收集:
一般数据来源于以下几种方式:数据库、公开出版物(统计年鉴或报告)、互联网、市场调查。
3.数据处理:
数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。导师提过在做数据处理时,不要在原始数据上进行数据处理以防原始数据丢失,保留数据处理过程以便发现错误时查找。
4.数据分析:
数据分析是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。
与数据挖掘的关系是数据挖掘侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式与规律。
5.数据展现:
一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。
在一般情况下,能用图说明问题的就不用表格,能用表说明问题的就不用文字。
6.报告撰写:
一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。
另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,好的分析报告一定要有建议或解决方案。
1.分析目的不明确,为分析而分析。
2.缺乏业务知识,分析结果偏离实际:数据分析师的任务不是单纯做数学题,数据分析师还必须懂营销,懂管理,更要懂策略。上周五听了公司专门做数据分析的同事做的关于新手留存的数据分析专题,他们数理统计专业知识必然过硬,而且对业务比较熟悉,能通过数据结合不同业务做出相应结论,还能为不同业务提出改进意见,不熟悉业务不懂策略怎行?
3.一味追求使用高级分析方法,热衷研究模型。
1.数据分析的广阔前景:根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。
2.数据分析师的职业要求:懂业务,懂管理,懂分析,懂工具,还要懂设计。
其中,懂分析中,基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等;高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
懂工具中,常用的数据分析工具有Excel、Access、SPSS、SAS,先学会用Excel,它能解决80%甚至100%的问题。
懂设计中,图表的设计是大学问,如图形的选择、版式的设计、颜色的搭配等,都需要掌握一定的设计原则。
以下几个常见的只是提一下:平均数、绝对数和相对数、百分比和百分点、频数和频率、比例和比率。
另外倍数与番数、同比与环比,我之前有疑问的特别提下。番数是指原来数量的2的N次方倍,比如翻一番为原来数量的2倍(2的一次方),翻两番为4倍(2的二次方)。同比是与历史同时期进行比较得到的数值,环比是指与前一个统计期进行比较得到的数值。(文章来源:CDA数据分析师培训官网)
这部分主要是对数据分析有了一个全面的了解而又粗略的认识,说实话这样的总结复述后很多地方我印象也不深,但总比看过一遍后不再管能多记住一些,当然能实践才会印象更深。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31